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Introduction

The White Rabbit put on his spectacles. “Where shall I begin, please your
Majesty?” he asked. “Begin at the beginning,” the King said gravely, “and go
on till you come to the end: then stop.”

Alice’s Adventures in Wonderland, 1865, LEWIS CARROLL
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1.1 Motivation

1.1 Motivation

FI1G. 4.-—Governor and Throltle-Valve.

Figure 1.1 — Centrifugal Governor. A continuous control system to regulate the pressure in a
steam engine; the faster the governor spins, the higher rise the two balls, and the lower becomes
the steam flow. While James Watt already used the control principle in his steam engine in 1788,
different engineers mapped the principle to the technology of the day. Illustration from [J[Rou81}
p. 6].

Mechanical and, thereby, automated control of technical processes was one of the enabling
factors of the industrial revolutionfTODO: David S. Landes, Der entfesselte Prometheus, Koln 1973, S. 52.. For
his improved steam engine, James Wat{!| used in 1788 the centrifugal governor to keep
the rotational speed of the engine uniform [[Rou81, p. 6]. A belt connects engine and governor such
that both spin with the same rotary motion. The faster the governor spins the higher rise the two
metal “flyballs”, which leads to an opening of the throttling valve. Thereby, an increasing stream
flow is subtracted from the engine’s steam input and a constant steam current fuels the engine.

The centrifugal governor is a perfect example of a dedicated control system with real-time
requirements. Its only task is to translate the rotation speed of the engine into a regulated steam
current fast enough that the engine runs with the desired conversions. If the governor fails to react
on a pressure increase in time, because of a slipped or broken belt, the input increases, the engine
accelerates, and even an explosion becomes possible.

We have built such dedicated systems as special-purpose systems. We designed and optimized
them for a specific environment as they must (and often only can) fulfill a single task. While this
specificity allows for a high tailoring potential of the system towards the desired use case, it comes
also with the imperative to specialize it. For a machine to be effective and efficient, the mechanical
engineer must combine, connect, and adjust different parts into a dedicated machine with a limited

1 Although, James Watt is often cited as the inventor of the centrifugal governor, Christiaan Huygens already described it
1673 in connection to windmills [Bat45]].
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set of use cases. Therefore, these special-purpose systems came with high engineering and integration
costs.

The age of general-purpose machines took its first glimpse when Charles Babbage proposed the
Analytical Engine as the first memory-programmable computers [[Bab64, cha. 8]. It took another
70 years, until Alan Turing showed that such a machine could calculate everything that is com-
putable [[Tur36]]. Once designed and built, a computer can fulfill different, and even multiple, tasks
without changing the physical design of the machine. In control systems, computers revolutionized
the field as they can implement every computable control function if connected to the appropriate
sensors and actors. Therefore, computers replaced the mechanical and pneumatic control systems of
the industrial age steadily and with an increasing pace.

ARM alone declared that they shipped a 100 billion chips from 1991 until 2017 [Hugl7]], with
half of them being sold in the last 4 years. Over 85 percent (Classic ARM, Cortex-M, Cortex-R) of
these are produced for the embedded market, where the computer is not the product itself but only
part of a larger stand-alone product. In terms of shipped units, the embedded market is the largest
segment for chip vendors [[Ten00]], although it remains mostly invisible for the customer. And with
the predicted and promised advent of the Internet of Things, we will scatter even more general
compute power all over the physical world.

However, with the decreasing pressure to built special-purpose mechanics to solve an engineering
problem came the illusion that tailoring is no longer necessary. We connect highly dynamic, and
even distributed, computer systems to the physical world and use programming languages with
a high abstraction degree to express our ideas. While these abstractions foster the productivity,
the time—to-market, and allow for the dynamic self-adaption of systems, they come at high costs.
The more complex and dynamic a system gets, the harder becomes a verification of its functional
properties, like correct operation or timeliness of the reactions. Furthermore, flexibility and run-time
adaptability can have a negative impact on the system’s non-functional properties, like memory usage
or energy consumption.

However, the underlying problem did not become less specific just because we solved them
with adaptable, dynamic, and easily reusable machines. Therefore, we often overfulfill the actual
requirements of the problem and use the capabilities of the employed compute systems partially.
This huge, wasted potential is a thorn in the eye for market segments that ship a high number of
units and are, therefore, sensitive to higher-than-necessary per-unit costs.

A prime example for a price sensitive sector is the automotive industry. Every modern car entails
around a hundred control units with at least one processor [[Cha09]]. If Volkswagen could reduce the
cost of only one of these processors in every sold car by a single cent, the company’s profit would
have been 107 000€ higher in 2017 [|Akt17]].

However, the price-per-unit is not the only factor, but we also must consider the cost for the
engineering. Unlike mechanical systems, a computer can more easily choose at run time the action
that should be performed. So, even if the concrete system always chooses the same action, the
engineer can include, without much thought, more functionality and postpone the decision to the
run time. While a centrifugal-governor valve with a Gardena plug is ridiculous even if “it always
comes with one”, this reflects the common practice in writing software. Manual tailoring is often
avoided, since it is too laborious and has the potential to introduce more bugs due to the complexity
of the software stack. Therefore, it is crucial to automate the analysis and the tailoring of software
systems towards the actual application requirements.

An area, where the potential for automated, in-depth analysis and tailoring is especially high,
are real-time computing systems (RTCSs). Since we have to guarantee that the RTCS reacts to some
stimuli with an upper timing bound, we already must have a large amount of knowledge about
the system to analyze it ahead of time. Even more, often all software components, like real-time
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operating system (RTOS) and real-time application (RTA), are inseparably combined into a single
system image, which is then loaded onto the microcontroller unit (MCU). If an update is necessary,
we generate a new system image and replace the old one entirely. This tight combination on the
implementation level provides us with a closed world assumption and eases system analysis and
tailoring.

However, the development of RTOS and application is often done in isolation by different
engineering teams, or even different companies. Therefore, the interweaving of both components
still remains limited and, far to often, the common-of-the-shelve (COTS) RTOS is used with only
minor adaptations, like a different feature selection. Thereby, we waste the potential for stricter
guarantees on functional properties and for improved non-functional properties.

In order to ease these problems, we must get a better understanding of the concrete application
and what functionality is actually requested from the system software. I aim to achieve this better
understanding by a flow-sensitive interaction analysis of RTOS and application. With the resulting
whole-system view, [ want to achieve a better tailoring of the RTOS towards the actual application
requirements and give a better quantification of the actual implementation properties (e.g., response
times or stack consumption).

1.2 Research Context of this Thesis

This thesis takes place in the context of the AHA research project (DFG LO 1719/4-1, “Automated
Hardware Abstraction in Operating Systems”). There, we apply automated use-case requirement
analysis and specialization to whole software stacks (application, operating system, and hardware)
with a special focus on the system software. It is the project’s objective to find the highest possible
degree of software- and hardware specialization that is possible, beneficial, and desirable. For this,
we [[>Fie+18]] developed a taxonomy that is based on the notion of interaction to classify different
levels of system-software specialization.

First of all, we define what we mean by specialization (of system software): Specialization is
an adaptation of the hardware platform, the operating system, or the application code, which
must meet three necessary conditions: (1) The specialized system exposes the same observable
behavior (like scheduling order) from the applications point of view. (2) The specialized system
eases the verification of the functional properties or shows improved nonfunctional properties
over the unspecialized system. (3) The specialized RTOS-hardware combination looses the ability
to produce the correct observable behavior for every thinkable application. Especially the third
condition distinguishes an optimization from a specialization. For example, we optimize an operating
system if we replace the semaphore implementation with a faster variant. However, we specialize
the operating system if we remove the semaphore subsystem altogether for an application that does
never use semaphores.

In Fiedler et al. [[>Fie+18]], we stated the third condition more precisely by introducing the
concept of interaction graphs. In these graphs, we connect RTOS abstractions (or instances thereof),
like threads, such that the edges indicate potential interactions, like preemption or wait-for relations,
between them. For example, shows the most general interaction graph for an example
RTOS specification with threads, interrupt-service routines (ISRs), and events. Here, threads can
wait passively for an event until another thread or an ISR signals the event. If an RTOS-hardware
stack supports all specified interactions and the unlimited creation of system objects, it fulfills the
specification and can execute every possible application.

However, most applications do not need an unlimited number of instances and they do not invoke
all possible interactions. For example, an application that never creates an event will never wait

specialization

interaction
graphs
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1.2 Research Context of this Thesis
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Figure 1.2 - Interaction Graph for General and Specialized RTOS. The specialized RTOS is no
longer able to fulfill its function for applications that require events. Figure adapted from Fiedler
et al. [>Fie+18].

passively and no wake-up signal can ever be sent. If we disable event support (see [Figure 1.2b), the
compiled RTOS still works perfectly for our application, but it does not meet the full specification;
applications with events will not work correctly. Summarized, a specialized RTOS instance exhibits
only a subset of the full interaction graph that the RTOS specification prescribes.

In this thesis, I investigate on a detailed variant of interaction graphs that grasps requirements
with a high precision, but is also highly specific to a single application: the context-sensitive interaction
graph. This variant does not only describe how abstractions interact but it goes down to the instance
and the source-code level. While the interaction graph from [Figure 1.2b|excludes waiting in general, a
context-sensitive interaction graph can, for example, expel waiting when a thread currently executes
a specific function.

1.3 Purpose of this Thesis

To illustrate the benefits of a context-sensitive interaction analysis, I will anticipate the integrated
response-time analysis from [Chapter 4] In a nutshell, the worst-case response time (WCRT) is the
longest time a system takes to react upon some event, like an external interrupt. This duration covers

thread Low thread High thread Low thread High
/ \ Q« / \ activate @4
activate e
100 10 200 100 10 200
\ 9 z@ é \ 9 —4@ é
Real-Time Operating System Real-Time Operating System
(a) Flow Insensitive (b) Flow Sensitive

Figure 1.3 — Example for Response Time Analysis. The end-to-end response time for thread
low, which can activate the high priority thread, benefits from the flow-sensitive analysis of the
interaction between RTOS and application. When having only flow-insensitive information, we
must give an upper bound of 303 cycles, with flow-sensitive information we can sharpen this
bound to 213 cycles.
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the execution time of all necessary and interfering tasks, all interrupts, and all hardware-induced
delays.

In[Figure 1.3a] we see a system that consists of two threads and their control-flow graphs (CFGs),
where we annotated each node with its worst-case execution time (WCET). Furthermore, we know
that the low-priority thread activates (at some point) the high-priority thread and the RTOS will
immediately preempt Low in favor of High. For Low’s WCRT, we accumulate the duration of the
longest execution path in Low (103 cycles) and the longest execution path in High (200 cycles).

However, in a more detailed picture of the system (see[Figure 1.3b)), we see that Low activates
High only in the right branch of its condition statement. We know that the interaction (activate),
which the RTOS mediates in form of a context switch, is only invoked in a certain flow-sensitive
context. Therefore, we can give a much tighter bound for WCRT (200 + 13 cycles) as the worst-case
path from flow-insensitive situation cannot occur in reality.

The problem of the flow-insensitive variant, which leads to the more pessimistic WCRT estimation,
is the isolated execution-time analysis of each thread. After we pessimistically calculate an upper
bound for the execution time of each thread, we pessimistically accumulate it into an end-to-end
WCRT. Here, the flow-sensitive interaction analysis is able to overcome this segregation between
threads and allows for an integrated WCRT.

In this thesis, I will discuss the benefits of (control) flow-sensitive interaction analysis that spans
multiple execution threads for real-time systems. Thereby, I try to answer the following research
questions:

- Die Fragen sind nicht selbsterkldrend. Und ausserdem hat man das Gefiihl, man miisste sie auf die nachfolgende

Graphik abbilden. Aber eigentlich werden diese Fragen in mehreren Kapiteln beantwortet.

RQ1 Is a control-flow sensitive view on the RTOS-application interaction feasible for whole-system
analysis?

RQ2 [HOED Vehr Anwendung iiber Kerngrenzen hinweg What analysis and run-time inefficiencies arise in
the real-time application from its segregation into distinct execution threads?

RQ3 [HOEDE Nur Kernverhalten. Tailoring What beneficial non-functional RTOS properties can we achieve
if we have an integrated view on the whole real-time computing system?

1.4 Structure

Optimization Analysis
Application-Specific Real-Time Automatic
Processor Pipeline Kernel Verification
7

Fine-Grained © Response
Stack Sharing System Time Analysis

Figure 1.4 - Structural Overview of this Thesis

For this thesis, I investigated and validated my approach in four different projects (see[Figure 1.4)
that make use of flow-sensitive interaction graphs. These projects are collated in two parts that focus
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on the analysis of the RTCS and its optimization. Thereby, I answer the stated research questions
cross-cutting to these parts.

Fundamentals — Background and Context (pp. 11-30)
In this thesis, I analyze the interaction between application and operating system in event-
triggered real-time systems. Therefore, I provide an introduction to these systems, describe the
used system model, and discuss the mismatch between the view of real-time and implementation
engineer.

Foundation — Fine-Grained Interaction Knowledge (pp. 31-57)
In this chapter, I recap the foundation of the control flow-sensitive interaction analysis and
describe different methods to grasp the RTOS-application interaction. As analysis result, I
describe two application-specific, flow-sensitive interaction models.

Analysis (pp. 61-100)
In the analysis part, I use the interaction model to improve other static analyses of the RTCS to
give better (non-)functional guarantees for the examined system.

SysWCET — Whole-System Response Time Analysis (pp. 61-95)
As first analysis chapter, I present the SysWCET approach as an integrated worst-case response
time analysis that spans from the machine-code level to the scheduling analysis. Furthermore,
I show how this method, which was developed for timing analysis, can also improve the
estimation of the worst-case response energy consumption.

Automated Kernel Verification (pp. 97-99)

As second analysis chapter, I use the interaction graph to verify that a given kernel binary
exhibits the correct RTOS behavior. Thereby, the verification is done specifically for a given
application and does not rely on a semantic source-code analysis.

Part 11| Optimization (pp. 103-150)
In the optimization part, I use the application-specific interaction model to constructively improve
the non-functional properties of the RTCS implementation, like jitter and memory usage.

Semi-Extended Tasks — Stack as a Shared Resource (pp. 103-131)
As first optimization of a non-functional property, I present a method to share stack-space
memory efficiently between different blocking threads. Therefore, I develop a fine-grained
method for finding upper bounds on the worst-case stack consumption and use a genetic
algorithm to find a good system configuration.

OSEK-V - An Application-Specific Processor Pipeline (pp. 133-149)
In this chapter, I push RTOS specialization to its limits by replacing the RTOS implementation

with a behavioral-equivalent finite-state machine. Integrated into an application-specific
processor pipeline, the resulting system exhibits low kernel run-time overheads with a low
jitter.

Summary, Conclusions, and Further Ideas (pp. 151-153)
In the last chapter, I summarize my contributions, give a conclusion to my research questions,

and point out further research ideas.
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1.5 Typographical Conventions

For citations, an open triangle indicates that I was the main or one of the co-authors (e.g., [[>-DHL17[]).
Newly introduced terms are highlighted in italic and the margin notes provide a course guideline of
the touched topics. Functions and program variables are set in with a monospace font (function(),

variable).






Fundamentals

Background and Context

It is often asserted that discussion is only possible between people who have
a common language and accept common basic assumptions. I think that this
is a mistake. All that is needed is a readiness to learn from one’s partner in
the discussion

Conjectures and Refutations, 1963, KARL POPPER

In a nutshell, the goal of this thesis is to develop techniques that make beneficial use of context-
sensitive analyses results about the RTOS-application interaction. Hence, there are two areas that are
fundamental for the understanding of the proposed techniques: real-time systems and static-analysis
techniques that allow us to take hold of these systems programmatically. Furthermore, I will discuss
the diverging view of real-time and implementation engineer when it comes to the implementation
of a real-time computing systems, which leads to the observation that an implementation-level
analysis is advised.

The chapter is structured as follows: [Section 2.1|introduces the real-time abstractions and how
they are usually mapped to concrete RTOS primitives. [Section 2.2|explains the resulting mismatch
between real-time concepts and mapped implementation, and argues that we should analyze RTCSs
from the code level upwards. [Section 2.3|briefly summarizes the chapter.






2.1 Real-Time Computing Systems

2.1 Real-Time Computing Systems

In general, an real-time system (RTS) is a technical system whose correctness depends not only on the
correct outputs but also on their timeliness [[Mar65; LRG95|]. In particular, every system that must
react correctly to an external event within a (guaranteed) bounded amount of time is a real-time
system. And while a functionally-correct implementation and working I/O interfaces are already
sufficient for the correct results, their timeliness is much harder to ensure. Thereby, the word prefix
“real-time” does not make a statement about the speed of the system’s operation, but only about
the maximal distance of triggering event and corresponding reaction on the physical-time (the real
time) axis. Hence, the timeliness of a RTS not only depends on its implementation but is also heavily
influenced by the operation environment.

It is this dependence on the timeliness, that lifts the reaction time from a non-functional property
to a functional property of the system. While a functional property fulfills a functional requirement
that is essential to the logical correctness of a system [[CP0O9]], non-functional properties are about
the quality of the provided system service. Thereby, the classification is not inherent to a certain
property, but it depends on the environment: Where the reactiveness of a graphical user interface
is a (desirable) quality of a webbrowser, it becomes an (essential) functional property for the user
interface of a fighter yet if is implemented with HTML5 and CSS.

While computer scientists often believe that every RTS contains a computer, we have seen in
[Chapter 1]that also mechanical and pneumatic systems are subject to real-time constraints. Therefore,
we make a distinction between the RTS and the embedded RTCS [[Kop11[] that calculates the control
decisions. gives an overview how the different concepts are enclosed into each other. The
whole system, which measures and controls the environment in a timely fashion, is the real-time
system. The real-time computing system executes the required control task with the help of one or
multiple processors, which are connected via sensors and actors to the environment. The real-time
application (RTA) is a program that implements one or multiple control tasks in software. The
real-time operating system (RTOS) manages the execution of the RTA and exposes a system-service
interface to provide access to the hardware and to manipulate the executor mechanism. As this thesis
focuses exclusively on systems with a RTCS, I will use the terms RTCS and RTS interchangeably.

real-time system

ke cmpunessen | o -
>‘ real-time application F
i N

‘ real-time operating system ‘

environment
environment

sensor

Figure 2.1 — Real-Time System

There are at least three different lenses under which computer-implemented RTSs are viewed:
control theorist, real-time (scheduling) analyst, and implementation engineer. From a high-level
perspective, these three points of views reflect the development phases of a RTCS in a waterfall
development model [Roy70]]. The control theorist grasps the physical dynamics of the controlled (ex-
ternal) object and chooses an appropriate controller (e.g., a PID controller [Min]]). Since controllers
are normally designed in the continuous domain, the theorist provides a time-discretized implemen-
tation, which the RTCS must invoke periodically. The real-time analyst is confronted with one or
multiple software-implemented controllers and their timing requirements. Under an appropriate
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task model (e.g., the sporadic task model [Mok83]]), he chooses task parameters (e.g., priority), and
makes a statement about the schedulability of the system; is it possible to meet every deadline for
every task? The implementation engineer takes the RTA and maps the task-model concepts to the
available RTOS abstractions, like threads and semaphores. With every step, we decrease the level
of abstraction as we get closer to the actual implementation on the deployed hardware. However,
we also get closer and closer to the eventually operated RTCS and, therefore, the actual run-time
behavior.

As this thesis focuses on the interface between real-time analysis and implementation engineer, I
will give an overview of commonly used real-time terminology and its mapping to RTOS concepts
and primitives. For this, I will stick to the Burns standard notation [[Dav13]] as close as beneficial
and base the description on the sporadic task model [[Mok83]. gives an overview over of
the most important concepts.

2.1.1 Real-Time System Concepts

In digital control systems, values cannot be calculated continuously, but we must discretize the
calculation into work packages, called jobs. Upon some external event, a job J; is released at a certain
time t, and must be completed before its relative deadline D; is elapsed at t, + D;. Since the released
jobs are highly regular, we use templates in form of tasks for instantiating jobs. Furthermore, all jobs
that are instances of the same task 7; inherit their relative deadline, and other real-time properties.
The entirety of tasks within an RTCS constitutes its task set 7.

One of the most important distinction for RTCSs is the criticality of deadline misses. According
to this characteristic, we distinguish between soft, firm, and hard real-time systems [[HR95|]. For
a hard RTS, it is catastrophic, in the sense of extremely high costs, to miss just a single deadline.
Therefore, a multitude of theoretical analyses methods must be applied before the deployment to
guarantee the timely execution of all jobs. The classic example of a hard real-time system is the
break controller of a car. There, a missed deadline in a critical situation can provoke a crash and
might lead to (deadly) injuries.

A less strict class is the firm RTS, where the result of a job becomes useless immediately after its
deadline has passed without completion. An example for a firm RTS is a robot at an assembly line
that assembles the current work piece incorrectly if it cannot calculate its movement trajectory in
time. However, with specific task models, like the “(m,k) firm deadlines”-model [[HR95]], we still can
make guarantees about the quality of service.

Parameter Description
T  taskset set of all tasks that a RTCS executes
T; task static description for a class of jobs; each task release
instantiates a job; sporadic and periodic tasks
p; period time between two releases of a periodic task

I;  minimum interarrival time minimum time between two releases of a sporadic task

C; worst-case execution time  longest computation time of a released job if it is exe-
cuted without interference

Ji  job one instance of one task, released at time

D, relative deadline maximal time between release and completion of a job

Table 2.1 — Important Real-Time System Parameters

14



2.1 Real-Time Computing Systems

The most forgiving class are soft RTSs. Their quality of service degrades if deadlines are missed
in operation and there is no discrete point in time when the utility function of a job result drops
to zero. For example, the experience of computer games degrades if the game logic misses more
and more frames and the player gets continuously more frustrated. However, as long as the game
remains playable it fulfills its purpose.

From the reflection on different timing-strictness classes, we see that RTCS elevate the otherwise
non-functional property “timeliness” increasingly to a functional property. An hard RTS that does
not meet its deadlines is not a functionally correct system.

It is the chore of the RTOS to schedule the released jobs onto the available processors such that
all deadlines are met. However, often the deadline of a job is not the sole constraint the RTOS must
obey, but a job can also depend on the execution of other jobs. While this was explicitly excluded in
early task models [[LL73}; Mok83|], mechanisms to include task dependencies were developed over
time [[CL9O0; [Bak91; HKL91; |Aud+92].

Thereby, we can distinguish between directed and undirected dependencies [[Sha+04]]. Both of
them express that the execution of two tasks are not independent and their relationship has to
be considered by the real-time analyst. A directed dependency, or precedence, between two tasks
ensures that the dependent job is executed only after the dependee has finished [[Aud+92]]. With
DAG task models [|Sti+11}; [Bar10]], dependencies were introduced on the intra-task level. However,
a general understanding of inter-task precedence is still an open topic of research [[Sha+04]].

An undirected dependency expresses resource sharing constraints between two tasks and prohibits
the interleaved execution of their jobs. Such mutual-exclusive constraints can, for example, arise if
both tasks access the same object or memory region. However, such mutual-exclusive constraints
can be problematic in the context of real-time systems as waiting times must be bounded [[SR1.90al]
and deadlocks avoided [[Bak91[]. While these undirected dependencies can be expressed on the task
level [WS99]], they are normally declared programmatically between fine-grained sections of task
code [[SRL90a; Bak91]].

If we add dependencies to a RTCS, we can use them as a distinguishing feature between tasks:
While complex tasks have at least one dependency on another task, simple tasks have no dependencies
and can, therefore, be scheduled with considerably fewer constraints [Kop11, cha. 9.2].

Until now, we have ignored the causes that lead to a job release. We have already discussed that
the control theorist hands a discretized implementation of the controller to the real-time analyst for
periodic activation. Therefore, RTCS provide the concept of periodic tasks, which are released with
period p; and an offset ¢;, to cover such application patterns [[LL73; [BB97].

However, as not all jobs fit into this fixed grid of periodic tasks, RTCSs provide sporadic tasks [Mok83]].

For a sporadic task, we do not know the exact release time, but only a minimum interarrival time i;.
As the period p; of a periodic task is its minimum and maximal interarrival time, the sporadic-task
model is a generalization of the periodic task model. However, it is still useful to distinguish these
two task types as they are often mapped differently to RTOS abstractions.

The task set and its inter-task dependencies describe the logical structure of the RTCS. However,
the real-time analyst also has to consider the work-load that this structure carries. For this, she
quantifies the computational requirements of each task in its WCET C;; the longest job execution
time. While the actual WCET is often hard to obtain [Wag+17[], we normally use a statically-derived
safe upper bound. Thereby, the WCET does explicitly not include delays that stem from preemptions
or interference with other jobs. Unlike the other task parameters, the WCET is hardware dependent
and must capture the influence of processor pipelines, caches, and branch predictors on the task
code. We will come back to the WCET analysis topic in|Chapter 4
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2.1.2 Event-Triggered Real-Time Operating Systems

The concepts from the last section (Section 2.1.1) are abstractions that the real-time analyst uses
as a model of the RTA. She adheres to the chosen task model and captures the structure and the
real-time properties of the system. In the scheduling analysis, the analyst derives other real-time
properties (e.g., priorities) and makes guaranteed statements about the system’s timeliness.

As next step in the product development, the implementation engineer maps the RTA onto a
concrete hardware in such that the system adheres to chosen scheduling and task model. For this,
about 67 percent of the embedded developers make use of some kind of OS or RTOS [AEel7ﬂ
An RTOS, or real-time extension to an existing OS, provides system services and interfaces that
allow the implementation of the RTA. Although many open-source and commercial RTOSs exist,
most provide similar abstractions, like threads and interrupts. For this thesis, I will stick to the
notation and terminology of OSEK [[OSE05]] systems, since my system model, which I will describe
in[Section 2.1.3] is also based on this RTOS standard.

The most basic distinguishing dimension of RTOSs is the real-time architecture [|Sch11) cha.
3.4]. The two most prominent representatives for real time (RT) architectures are time-triggered
RTOSs and event-triggered RTOSs. The two differ in their scheduling time: time-triggered systems
schedule offline, event-triggered ones schedule online at run-time. As this thesis concentrates on
event-triggered systems, I will only briefly outline the time-triggered RTOS architecture to highlight
the decisive features of event-triggered systems.

Time Action

0 Start and switch to thread 7,

4 Start and switch thread 7,

6 Enforce deadline D, = 2 for 7,
6 Resume to 7,

8 Enforce deadline D; = 6 for 7;s

Table 2.2 — Example for a Time-Triggered Scheduling Table

The central data structure for a time-triggered RTOS is its scheduling table, which describes what
action should be taken at a specific point in time [|[BS88; ATB93]]. Therefore, they are also referred to
as table-driven RTOSs. As all scheduling decisions are known before run time, the timeliness of the
system can be ensured by analyzing the scheduling table and the task’s WCETs. Therefore, the highly
safety-sensitive civil avionics defaults [[PriO8]] to use table-driven RTOSs, like ARINC 653 [JAEEO3]],
which also sparked interest in the space community [[DRO5]].

The scheduling table links relative time offsets to actions like a thread switch or the dynamic
enforcement of a deadline. shows an example of such a scheduling table. There, two threads
with a combined WCET of 8 time units are executed interleaved. At run time, a hardware-triggered
timer ISR carries out the action of one table row and configures the timer for the next table row.
If the execution reaches the end of the table, it wraps around and starts over in the first row. As
no other RTOS mechanisms are provided at run time, the table must be constructed such that all
directed and undirected dependencies are fulfilled.

Besides the good analyzability, such a table-driven mechanism is also simple to implement and
results in small run-time overhead. However, the generation of scheduling tables is considered a
hard problem [LW82]] and the tables quickly become large. Therefore, not only optimal strategies
for table generation were proposed [XP90; |AS99]], but also heuristics [[CK88]].

2For the remaining 33 percent, 86 percent said that the application is simple enough to not require OS services.
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Compared to the time-triggered architecture, event-triggered systems avoid the large tables by
delaying all scheduling decisions to the run time. There, an online scheduler decides on certain
scheduling events, like a system call or an interrupt, which thread should be executed next according
to the scheduling strategy. Therefore, event-triggered systems allow for lower reaction times as an
important thread can be dispatched immediately upon some external event instead of waiting for its
table row to be executed.

Another benefit of event-triggered systems, which might be another reason for their popular-
ity [AEe17]], are their OS abstractions and their interface. They resemble the well-known system-call
interfaces that are known from general-purpose operating systems. In the case of the POSIX operating-
system standard, event-triggered real-time extensions were even integrated into a general-purpose
OS specification [|98]].

In the following, I will describe the important abstractions that an RTOS must provide to imple-
ment an event-triggered real-time system. Thereby, I will sketch how the concepts from the real-time
domain are mapped onto the RTOS abstractions.

2.1.2.1 Activities: Interrupt Handlers and Threads

One of the core chores of operating systems is the multiplexing of limited hardware resources.
Multiple applications or other users require the operation of a single hardware component, which
often cannot be shared between different users at the same time. Thereby, the processor is the most
basic component to allocate and multiplex, as only running software can ask for more resources.
Therefore, timesharing operating systems were invented early on [[CMD62; |Org72; RT74].

In these systems, the basic entity of processor-time allocation is the thread. In order to service
multiple threads on a single CPU, the RTOS switches between these threads and, thereby, performs a
time-division multiplexing of the CPU. We call the selection of the currently running thread scheduling
and the enforcement of this decision the thread dispatching.

In its core, a thread is a control flow whose execution is managed by an operating system;
without an OS, there can be no threads. Thereby, a control flow an active entity that executes on
an processor and is constituted by a program counter that points into the program memory and
some execution context. For most operating systems [[Dun+06]], at least the register contents and a
run-time stack are associated with a thread, but more OS resources, like an address space, may be
referenced. On the thread dispatch, the execution context of the currently running thread is saved
to memory, and replaced by the context of the dispatched thread.

The CPU multiplexing by the OS gives every thread the illusion of being alone on its own virtual
CPU. For the thread, it seems that instructions from its program memory are continuously executed,
since it cannot detect being stalled when it is currently suspended.

Besides threads, there is another kind of activity the RTOS manages: hardware interrupts. With
an interrupt request (IRQ), the periphery signals the processor the occurrence of an external event.
The interrupt controller detects this external signal and informs the CPU about the IRQ. If the current
processor state allows for it, the CPU saves parts of its execution state and executes an interrupt-
service routine (ISR) that is associated with the IRQ source. Normally, these ISRs are installed by the
RTOS and it is a central RTOS chore to synchronize between service requests from the hardware
and the software.

From the RTOS point of view, both concepts, threads and interrupts, are very similar and re-
searchers have show that they can be mapped onto each other [[KE95; |[Hof+09]]. Therefore, I will
use the term activity as the generalization for these RTOS-managed activities.

When we want to map tasks to threads, we face the problem that these concepts are of a
different category. While a task is a static description of work, a thread is a currently executing
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activity and, hence, more like a job. Therefore, either the RTOS must provide some kind of persistent
threads or we have to mimic this with other OS services. shows both cases. If an RTOS
has native task support, you can release a job from a static task description as a thread activation,
which terminates itself on completion. If there is at least one thread activation outstanding, the
RTOS thread is runnable, otherwise it is suspended. One example of RTOS with direct task support is
the OSEK OS standard [[OSEQ5]].

For an event-triggered system, we use an online scheduling strategy that decides upon the
system state and different real-time parameters what thread should be dispatched next. For this, the
priority-driven online strategies and their theoretical analysis was an important milestone for the
real-time domain [|[Sha+04]]. Thereby, the real-time analyst derives priorities as secondary parameters
from the primary real-time parameters (e.g., period, deadline, or WCET). Attached to tasks, jobs, or
parts of jobs, the analyst guarantees that the real-time system will meet all deadlines if the scheduler
adheres to the priorities. The implementation engineer then ensures that among all active jobs,
however they are mapped to RTOS abstractions, the highest-priority job is executed. This job runs
until it terminates or an even higher-priority jobs is released and preempts the, now lower-priority,
job.

We already see that the real-time analyst, as well as the implementation engineer have their
parts in priority-driven scheduling. The analyst decides which entities (tasks or jobs) have attached
priorities, where rescheduling should take place, and what are the priorities. The implementation
engineer maps the tasks and jobs to control flows and implements an online scheduler that enforces
the policy for this mapping. If the RTOS fails to enforce the mapping and a low-priority job is
executed although a high-priority job is pending, we speak of a priority inversion.

The decision where to attach the priorities, distinguishes different classes of real-time scheduling:
For task-level, fixed-priorities systems, we attach the priority to the task and all released jobs inherit
this priority. Therefore, we also call this class static-priority systems. The most prominent example
how to derive static priorities from the real-time parameters is rate-monotonic scheduling [[LL73[],
which assigns the highest priority to the task with the shortest period. However, also other priority-
assignment policies like deadline-monotonic scheduling are availabe [LW82]].

The other important class are the job-level, fixed-priority systems where a priority is derived
for every released job. Due to this dynamicality, we call such systems also dynamic-priority systems.
Here, the most important representative is the earliest deadline first (EDF) policy [ILL73|]. For EDE,
the absolute deadline becomes a job’s priority; the closer the deadline is to the current time, the
higher is a job’s priority.

T1 = CreateThread(&task_T1) ‘

WakeupThread(T1)
. 3
- void task_T1() { ? o
2 while (true) { 9
O 1 .
Task(T1) { il )8 WaitForWakeup ()
'i"é;'minateTask (O
}
(a) with task support (b) without task support

Figure 2.2 — RTOS with and without Native Task Support
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Although, dynamic-priority systems can achieve optimal utilization [[LL73]] for some classes of
task sets on uni-processors, it is argued that fixed-priority systems are the most common choice in
industry [[Brall, cha. 1.2][|OSEO5; |Sak98]]. One reason, as Brandenburg [Brall] suggests, is the ease
of implementation. While we can implement the ready list for a fixed-priority system with a bit-mask,
we must spent more development effort to get a fast implementation for EDF scheduling [[Sho10].
In this thesis, I will concentrate on fixed-priority systems.

2.1.2.2 Control: Job Release and Directed Dependencies

With thread and priorities, our RTOS already provides abstractions to execute jobs coordinated.
However, we also have to release jobs and express directed dependencies between them with the
help of RTOS services. If our RTOS already provides a task abstraction, like discussed in the previous
section, we release a job by starting the corresponding thread when a periodic or sporadic event
occurs.

For sporadic tasks, the activating event is external to the RTCS and we do not now the exact release
time. In actual implemented RTCS, peripheral components (e.g., digital switch or an acceleration
sensor) send these events to the processor and the RTOS receives and interprets them, normally
with the help of specialized interrupt-detection hardware. Upon a job release, it depends upon the
RT model, whether the RTOS must reschedule immediately or if the reschedule happens at some
later point in time (e.g., next system call).

This direct temporal connection between the external event and the job release is the defining
factor for an event-triggered system. In a purely time-triggered systems, we have to include table
entries to poll for the activation of sporadic tasks. Furthermore, we must reserve time budgets in the
table to execute sporadic tasks by using, for example, a sporadic server [[SSL89|].

For periodic tasks, an event-triggered RTOS provides the possibility to activate threads periodically.
Alarm objects, like the OSEK standard [[OSEOQ5|] specifies them, provide such a timing service.
Configured with the period and the offset of a periodic task, the RTOS releases jobs for a specific task
in equidistant time intervals. Often such timing services, not only allow periodic thread activations,
but they also offer one-shot timers and abortable alarms.

Unlike a time-triggered, table-driven RTOS, the periodic activation only releases periodic jobs
and does not directly lead to a preemption or resumption decisions. Take, for example, the rows for
T =0 and T = 6 in[Table 2.2} both rows result in the dispatch of the 7, but only the first one is
responsible for the job release.

Besides the periodic and sporadic release of a job, an RTOS should also provide mechanisms
to express directed dependencies. If a task has only one predecessor that must have finished its
execution beforehand, we can just activate the dependent thread after the dependency is fulfilled
(see [Figure 2.3a). For this, the RTOS must provide a system call for activating a thread from a thread
context, additionally to the activation from a ISR context. As these synchronous activations are
similar to external events, [|[Sch11]] also refers to them as logical events in comparison to physical
events.

However, with synchronous activations, we are still not able to express multiple directed de-
pendencies. While an RTOS could provide annotations for such task dependencies, most RTOS do
not provide such a descriptive interface. Instead, we can use mechanisms for passive waiting and
inter-thread signaling to mimic multiple dependencies on the implementation level. When an RTOS
provides such a mechanism, a thread can voluntarily wait on a waiting object. Thereby, the RTOS
transfers the thread into the waiting state until another thread (or ISR) signals the waiting object.
Until then, the thread is not in the ready state and the RTOS excludes it from scheduling decisions.
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Task(T1) { 7 Task (T2) { i
‘e dependenc ‘e
f release ActivateTask (T2); id 4 TerminateTask O ;
TerminateTask () ;
IRQ }

(a) Single Dependency

Task(T1) { ?
f release SetEvent (T3, E1);
IRQ TerminateTask (); de,oe/;o/enc
} N Task(T3) { ]

WaitEvent (E1);
WaitEvent (E2);

endency
Task(T2) { ?y}
i release SetEvent (T3, E2);
|RQ ) TerminateTask () ;

(b) Multiple Dependencies

Figure 2.3 — Mapping of Task Dependencies with RTOS Services

The classical example for such a waiting object is the semaphore [Dij65]], which also allows for all
other kinds of inter-thread synchronization.

For the RTS mapping, we have to use distinct patterns of waiting system calls to express multiple
dependencies. For example, for an AND dependency on two tasks, the dependent thread sleeps on
the occurrence of two event signals in sequence (see [Figure 2.3b). As long as the events are not
signaled, the thread is waiting and keeps preempted. After each predecessor thread has signaled one
event object, the waiting thread proceeds after both signals occurred. Thereby, the signal must be
buffered by the RTOS to make the reception of signals order invariant and to avoid the lost-wakeup
problem [Lam67]].

2.1.2.3 Synchronization: Mutual Exclusion

As the last aspect of our abstract real-time model, we must implement undirected dependencies. An
undirected dependency between two tasks instructs the RTOS to prevent the interleaved execution
of jobs from these tasks. So even if a job from a higher-priority job gets released, it is not scheduled
before the lower-priority job finishes if they share an undirected dependency. While undirected
dependencies mostly stem from application requirements, like access to a shared indivisible resource,
they may also arise from real-time concepts like preemption thresholds [WS99]], which increase the
schedulability of task sets. There, each task gets a preemption priority that it uses to preempt other
tasks and a preemption threshold that it uses to prevent preemption by other tasks. Thereby, all
tasks with the same preemption threshold cannot be active at the same time.

Since the mutual exclusion of program sections is a common synchronization problem, most
operating systems provide blocking locks for the application to synchronize their threads. At the
beginning of the to-be-protected program section, an activity takes the lock and releases it only at
the section end. As long as another activity holds this lock, the RTOS transfers other lock-requesting
threads to the waiting state; hence the name blocking lock. When the lock holder gives the lock
back, the RTOS wakes up one of the waiting threads and hands over the lock ownership.
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It is one distinguishing feature of such mutual-exclusion mechanisms, if other threads are able
to make requests for an already acquired lock, or if the scheduling avoids this situation altogether.
Examples for the former class are semaphores [[Dij65|] and priority-inheritance locks [[SRL9Ob].
However, as these mechanisms are prone to deadlocks, where two thread hold one lock each and
wait circular for the lock of the other thread, the systems community developed mechanism in the
latter class, like non-preemptive critical sections or stack-based, priority-ceiling locking [Bak91[].

While time-triggered systems can avoid locking by constructing the scheduling table such that
all undirected dependencies are already full filled, event-triggered systems require such explicit
synchronization mechanisms in the application code. However, they also give the implementation
engineer a much more fine-grained control (down to the statement level) about mutual-exclusive
sections. For the static analysis, they are explicit annotations in the application code and can benefit
the blocking-time analysis of a system [[BA10].

2.1.3 The OSEK Operating-System Standard

While the discussed abstractions (i.e., threads, ISRs, activation, signaling, and mutual exclusion) are
present in most RTOSs, many provide additional features and have, more or less slightly, deviations
in their semantics. To make things concrete but not too pinned down by a single implementation, I
chose the OSEK operating-system standard [[OSEO5(] as a well-defined interface for the analyzed
real-time applications. Throughout the thesis, I will use it for example systems and it also defines
my investigated operating-system model.

Starting in 1993 [[Joh98]], the German automotive industry started an initiative to harmonize the
software architecture used in automotive electronic control units (ECUs) to increase the portability,
extendability, and reusability of software components. The OSEKE] standard covers communication
between ECUs [[OSE04b]], the network management [[OSEO4c], and the operating-system inter-
face [JOSEO5]].

The OSEK-OS standard, which I will just refer to as OSEK standard from now on, is specified as a
single-core operating system. However, the AUTOSAR [AUT13]] specification, which is the successor
to OSEK, extends the OSEK world with multiprocessor support. Nevertheless, the AUTOSAR standard
describes a partitioned multi-processor instance, where an OSEK-OS instance is spawned on each
core and threads cannot migrate between cores. Therefore, I focus on the single-core OSEK standard,
which still reflects the state-of-the-art in automotive ECUs and automotive safety-critical real-time
systems.

While OSEK was developed by practitioners, it directly supports a wide range of concepts from the
real-time domain and is therefore a good base for my work on the interaction analysis of real-time
systems. Therefore, I will in the following describe OSEK, its design philosophy, and its system
services in detail as far as they are important for this thesis.

The most drastic paradigm change for developers that come from the world of desktop computing
is that OSEK is a static operating system. This means that all RTOS objects, like threads, locks, and
wait objects, must be declared before run time. They are known by their declared name and no
additional objects can be allocated at run time. While this looks like a harsh restriction on the
flexibility, the common real-time task models and most scheduling tests also prescribe a fixed number
of tasks. Furthermore, this large amount of ahead of time knowledge allows for a memory-efficient
implementation of the RTOS, as all objects can be stored in statically allocated arrays. Hence, no
dynamic data structures, like linked lists, or memory allocators are required to manage the OS

30SEK stands for “Offene S und deren Schnittstellen fiir die Elektronik in Kraftfahrzeug” (engl., “Open Systems and the
Corresponding Interfaces for Automotive Electronics”).
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objects. As OSEK targets small embedded systems, this focus on memory efficiency is considered as
one of the major success factors of OSEK [DMTO0O]].

Furthermore, an OSEK-compatible RTOS does not only know all system objects but also their real-
time properties, like priorities or preemptability. The developer has to declare the system objects and
their properties in a domain specific language called OSEK implementation language (OIL) [[OSEO4al],
which is interpreted by a system generator. A short example of an OIL file is shown in
task T1 has a static priority of 2 and is fully preemptable.

Listing 2.1 Example for an OIL file

1 TASK T1 {

2 PRIORITY = 2;

s SCHEDULE = FULL;

4}
Activities in OSEK directly supports tasks instead of providing only a thread abstraction. Behind the declara-
OSEK tion of task T1 in|Listing 2.1} an entry function with the same name is present within the application

source code. For each released job, the entry function starts from the beginning in an newly created
thread until it terminates , which the RTOS schedules under a fixed-priority policy. Rescheduling
only takes place at well-defined rescheduling points (i.e., system-call invocations, alarm expiration).
After the job finishes its execution, the thread is destroyed and no data is left on the execution stack.
While OSEK tasks are threads with a statically-defined way to create them, they are meant to be
continuously created and destroyed on every job execution.

OSEK specifies two kinds of tasks with different abilities: basic tasks and extended tasks. Basic
tasks always execute in a run-to-completion manner and are not allowed to wait passively. This
means that they execute instructions until they terminate themselves, but they are not allowed to
invoke a blocking system call such that they never enter the waiting state. Thereby, basic tasks can
all be started on a single shared stack; an aspect of OSEK that we will revisit in[Chapter 6] Extended
tasks, on the other hand, do not have this non-blocking restriction and are allowed to invoke all
system services.

Basic tasks and extended tasks have several real-time properties: Besides the static priority which
the job inherits on creation, tasks can be marked as non-preemptable. While a preemptable task can
be preempted in favor of a higher-priority task at every rescheduling point, a non-preemptable task
is not removed from the processor until it terminates or enters the waiting state. Thereby, OSEK
allows for fully-preemptable, mixed-preemptable, and fully-non-preemptable systems. If a task is
marked as AUTOSTART, the RTOS releases one job at boot time. Furthermore, the developer must
also declare the maximal number of pending jobs that can released per task.

Besides tasks, OSEK also supports the definition of application-specific ISRs, which again come
in two different abilities: A category-1 ISR is not allowed to invoke any system call, has no influence
on the scheduling, should provide the least amount of overhead for the developer. The category-2
ISRs (ISR2) can invoke a limited set of system calls (i.e., task activation, event signaling) in order to
influence the scheduling.

Control in For the synchronous management of jobs, OSEK provides three system calls: ActivateTask ({TASK))

OSEK activates a thread, TerminateTask() immediately finishes the execution of the currently running
job, and ChainTask ((TASK)) combines the self-termination and the activation of another thread
atomically. Thereby, the thread-activating system calls are the mechanism to express simple directed
dependencies. gives an overview about these system calls, as well as about the other
important system calls.
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System Call Arguments Description
ActivateTask TASK Releases one job of the specified task.
TerminateTask - Self Termination of a job.
ChainTask TASK Atomic combination of ActivateTask and TerminateTask
SetRelAlarm ALARM, offset, Configures an alarm relative to the current time which
period triggers periodically after the initial offset.
SetAbsAlarm ALARM, offset, Like SetRelAlarm, but with an absolute starting time.
period
CancelAlarm ALARMTYPE Disable an armed alarm.
WaitEvent EVENTMASK Transfer currently running job into the waiting state
until another job or an ISR signals one of the events.
ClearEvent EVENTMASK Reset signaled events from the jobs event mask.
SetEvent TASK, Signal all specified events to the given task.
EVENTMASK
SuspendAllInterrupts - Blocks ISR1 and ISR2 interrupts.
ResumeAllInterrupts  — Unlocks ISR1 and ISR2 interrupts.
GetResource RESOURCE Acquires a resource and boost the jobs priority to the
ceiling priority
ReleaseResource RESOURCE Gives a resource back to the RTOS and decreases the

dynamic job priority.

Table 2.3 — OSEK System Calls. Selection of important OSEK system calls. Arguments in SMALL
CAPS are references to system objects that are declared in the OIL file.

As timing service for periodic tasks, OSEK provides counters and alarms. Each counter is an integer-
typed variable that overflows to zero if it reaches an predefined upper bound. An hardware-timer
ISR increments all counters in equidistant time intervals and performs all necessary downstream
operations. Statically connected to one counter, an alarm object has a period, an offset from t =0,
and two boolean flags that indicate whether the alarm is periodic and is armed. While we can
manipulate these parameters dynamically via system calls, each alarm is statically connected to
invoke one of two actions on expiration: activate a thread or signal an OSEK event.

For extended tasks, OSEK provides the possibility to wait passively for events, which are similar
to POSIX signals. Every thread has a private set of signaled events, which he can (partially) clear
with ClearEvent () and others can extend with SetEvent (). On job-execution start, the task’s event
set is implicitly cleared [[OSEO5, p. 27], which is an inherent difficulty for avoiding the lost-update
problem. If a thread waits for an event with WaitEvent (), it enters the waiting state if the requested
event is not in the thread’s event set. The RTOS wakes the thread if another activity signals the
requested event.

Furthermore, WaitEvent () takes not only a single event but a set of requested events and wakes
up/continuous if at least one requested event is signaled; WaitEvent () checks an OR-condition on
the task’s event set. For an AND-condition, the implementation developer has to invoke WaitEvent ()
multiple times with different event sets (see [Figure 2.3b). Thereby, the events are the mechanism to
express arbitrary directed dependencies.
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The OSEK standard mandates, that the developer has to declare the list of events that a thread can
wait on. Due to the private nature of a task’s event set, where the same event (name) can be signaled
to different threads, we must address each send and received event via the tuple (thread, event).

For the expression of mutual exclusion, OSEK provides two different mechanism: ISR blockades
and OSEK resources. While the former exposes the CPU-level synchronization mechanism to the
application, the latter works purely by influencing the scheduler.

For ISRs, OSEK provides system services to block and to unblock the execution of ISRs. Thereby, the
user can choose to delay only ISRs of category 2 (e.g., Suspend0SInterrupts()) or all interrupts
that the hardware supports disabling for (e.g., SuspendAllInterrupts()), including hardware
timers.

With resources, OSEK provides a second mechanism to express the mutual exclusion of pro-
gram sections. OSEK resources are thread-level locks that use the stack-based resource proto-
col (SRP) [Bak91]] to avoid priority inversion and deadlocks by construction. The SRP is an extension
to the priority ceiling protocol (PCP) [[SRL90al] that eases the implementation and minimizes the
number of context switches.

For the SRP, each lock must know all possible lock-holding tasks to calculate the lock’s ceil-
ing priority as the maximum of the task’s static priorities. Whenever a thread acquires the lock
(GetResource()), we boost the thread’s dynamic priority to the ceiling priority. The OSEK scheduler
schedules according to the dynamic priorities, which the RTOS initializes for every job with the
static priority of the released thread.

After the acquisition, the currently running thread has the highest priority of its resource group
and no other thread that could acquire the lock will be scheduled. Therefore, the acquisition of a
resource will always succeed immediately and a thread will never wait for a resource to become
available. Thereby, deadlocks cannot occur as threads cannot enter the waiting state due to an
acquisition request.

OSEK resources come in two different flavors: A normal resource must be acquired explicitly by
a system call, and we use it to annotate program sections. Besides that, OSEK also provides internal
resources which are implicitly taken by a thread if we dispatch it. Therefore, implicit resources are
equivalent to preemption thresholds [WS99]], which was also shown by Gai, Lipari, and Di Natale
[GLDO1]].

Furthermore, OSEK always provides a RES_SCHEDULER resource that every thread can acquire.
Therefore, its ceiling priority is the highest priority in the system, and acquiring it effectively becomes
a non-preemptive critical section.

In order to reduce the resource consumption for smaller ECUs, OSEK defines four conformance
classes that imply an increasing amount of RTOS complexity. In the basic conformance class 1 (BCC1),
the RTOS only supports basic tasks and, hence, has no support for events. Furthermore, multiple
activations and more than one task per priority level are only mandated in the basic conformance
class 2 (BCC2). With the extended conformance class 1 (ECC1), the RTOS supports extended tasks
and event objects. However, support for multiple basic-task activations or multiple tasks per priority
level come only in the extended conformance class 2 (ECC2). For this thesis, I will concentrate on
BCC1/ECC1 systems.

2.2 From the Real-Time to the Operating-System Domain

In[Section 2.1.1} we discussed the real-time analyst’s mental model of RTSs. And although event-
triggered operating systems (Section 2.1.2)) are close to this model, problems arise from the transition
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between both domains. These difficulties are a call to action to take a closer look not only on the
real-time application in the RT domain, but also on the implemented application in the OS domain.

2.2.1 Ambiguous Mapping of Real-Time Concepts

Given a RTCS in the real-time domain, different mappings for tasks, activations and dependencies
onto RTOS and hardware mechanisms are possible. illustrates the general process of
mapping from the real-time domain to the operating-system domain and shows an example system
with two possible mappings. In the real-time domain, we have three periodic tasks (T1-T3) and one
sporadic task (T4). Furthermore, the execution of T3 depends on the completion of T1 and T2; T3
and T4 are mutual exclusive.

For the OS domain, we will for now ignore the priorities and possible priority inversions that can
occur from an incorrect mapping. contains two possible mappings of the example system
onto an OSEK API. The work of the real-time tasks is located in functions of the same name (e.g., task
T1 becomes the function T1()). On the left, we mapped each task into its own thread/OSEK task
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Figure 2.4 - Diffrerent Mapping of Real-Time Concepts onto RTOS Abstractions
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and implemented the directed dependencies with two evens that are signaled by T1 and T2. T3
waits in its task-entry function T3 () until both events are signaled. The activation of the periodic
task is done with a timer-driven ISR with a period of 5. The sporadic task (T4) is activated by its
own ISR that is connected to the external event.

While the left mapping reflects the exact structure of the task model, it is not the most resource
efficient implementation. On the right side, we implemented the same RTCS with a smaller number
of RTOS objects. For example, we inlined T1 and T4 directly into their respective ISRs and combined
T2() and T3() into the T2T3 thread. Thereby, we fulfill the directed dependency between T2 and
T3 by the sequential execution in T2T3. For the T1-T3 dependency, the location of T1 in the Timer
ISR and the subsequent ActivateTask() ensure the correct ordering.

While such a compressed mapping can be beneficial for the resource consumption, it increases
the verification complexity that the model was correctly implemented. However, such compression
during the mapping process is common practice in industry. For example, the AUTOSAR [[AUT13]]
calls its (real-time) tasks runnables and a system generator maps multiple runnables into one RTOS
thread [[YB10]]. Thereby, ECU vendors are able to shrink the memory usage of the systems, as only
one RTOS thread data structure is required and the subsequently executed tasks will surely reuse
the same stack space.

By this compression, we loose the strict one-on-one mapping between RT tasks and OS threads
that the standard literature suggests [Liu00, cha. 1.1]. This combination of tasks also has influence
of the scheduling and, therefore, has to be done carefully. For example, if T4 has the lowest priority
in the system, a priority inversion arises from the execution of T4 in the ISR (right side). However, if
the execution time of T4 is shorter than the RTOS overhead for activation, dispatch, and termination,
the deliberate inversion has less impact on the real-time schedule than the canonical form.

Another difference between both mappings is the timing characteristic of the multiple-dependency
pattern of T3. In the direct mapping, the RTOS schedules T3 up to three times before the T3 thread
executes one job. When the ISR activates the thread, it starts and waits for the first event E1. When
E1 arrives, the T3 wakes up for a short period only to wait for the second event E2. If E2 also arrives,
the thread is scheduled a third time, executes T3 (), the actual task, clears E1 and E2, and goes back
to sleep. In the compact mapping, the directed dependencies are implicitly encoded in the order of
job-function invocations.

It is noteworthy, that the distinction between real-time task and operating-system thread is a
common source of confusion between both domains. While the task is work that the RTCS must
somehow execute, a thread is an OS object, normally a co-routine, which the OS scheduler selects
at run time. A task is a static template for many transient, short-lived jobs, while a thread often
processes many work packages or messages, as it can also behave as a server for other threads. In
order to minimize the confusion, I will keep terms from both domains separate and I will avoid the
usage of “task” as some general duty or work, but I will use the word “chore” instead. If I want to
address the OS activity that is managed by the scheduler and is a technical entity, I will use “thread”.

This disassociation from OSEK tasks with the idea of real-time tasks, also becomes visible when
we look at a common usage pattern of the OSEK API. The looped-waiting pattern in is
another possibility to implement arbitrary patterns of multiple directed dependencied*l Here, we
implement the same dependencies for T3 as in[Figure 2.4] but the thread T3 executes multiple T3
jobs. We mark T3 as AUTOSTART=TRUE in the OIL file and it processes T3 jobs in an endless loop. In
this example, which is a correct usage of the OSEK API, the thread T3 lost its notion of a real-time
task. It “degenerated” to an (eternally living) OS thread that only carries a task in its while-true
loop.

“#Scheler [|Sch11]] describes even more patterns to implement multiple directed dependencies with the OSEK APL
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TASK(T3) { ?
while(1) {

unsigned int c = 0;
unsigned int freq; // 0..20

WaitEvent (E1);

WaitEvent (E2) ; TASK(Coordinator) { // peridically activated

/// T3 iob i 1 . T ct+;
T30); Job implementation if ((c % 2) == 0) ActivateTask(T1);
E ’ J if ((c % 3) == 0) ActivateTask(T2);
ClearEvent (E1|E2) ; if ((c % (5 * freq)) == 0)
} ActivateTask(T3);
} TerminateTask(); }

(a) OSEK Task to Thread Degeneration. The ac-
tual work of the T1 task is embedded into a loop
executes one step for every E1 or E2 event. How-
ever, the EventLoop OSEK task is no longer a task
by itself, but it becomes an eternally living thread
that carries a task.

(b) Emulation of Time-Triggered RTOS in OSEK. The developer of
this OSEK task misused the alarm capabilities of OSEK to emulate an
time-triggered with different operation modes via a helper thread.

Figure 2.5 — Non-Canonical Usages of the RTOS API

We have seen that the implementation engineer has multiple possibilities to map the same real-
time application onto the RTOS APIs. These different mappings have different characteristics when
it comes to resource consumption, but they also exhibit different timing characteristics. However, it
is not the real-time application in the RT domain that must exhibit a correct timing, but the actual
implementation on a concrete hardware. Therefore, it is essential to take a close look at application
behavior on the implementation level, which is closely tied to the RTOS-application interaction for
an event-triggered real-time system.

2.2.2 RTOS API Flexibility

Another aspect of the mapping process is the flexibility of the RTOS API and to what degree
it fosters and enforces explicitness. While the RT domain has a limited and well-defined set of
task dependencies and relationships, an OS interface is normally designed to support all kinds of
applications. For this, OS APIs often support a small set of basic operations that can be composed
into more complex operations. For example in Linux, the fork(2) system call and the dynamic
creation of threads are not supported separately, but the C library maps them both to the clone(2)
system call.

From the RT analysts point of view, it would be desirable that the RT-domain operations are
reflected one-to-one in the set of available OS operations. Thereby, the analyst could ensure that
her model covers the actual RTCS entirely and that the implementation does not manipulate the
scheduling in an unforeseen way. However, such a restriction is unrealistic as the RT model of the
system is exactly that: a model and, thereby, a problem specific simplification of the required solution.
When the model of the RTA comes into contact with the system environment, the hardware platform,
and the behavior of peripheral devices, the implementation engineer often requires a more flexible
and composable RTOS interface. We leave out these implementation necessities in the RT model on
purpose, but they will still end up in the deployed system.

For example, if we assume a task model without undirected dependencies (no mutual exclusion),
the implementation will often still require a mechanism to synchronize access to shared resources in
order to ensure a correct operation. These mutual-exclusive sections might not even stem from the
application code itself but from communication with the hardware or the usage of third-party libraries
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(i.e.,logging). Therefore, the restriction to the exact set of RT-domain operations is unrealistic and
the RTOS API must remain flexible and composable. From this dichotomy between RT and OS
domain, different mapping issues can arise.

First of all, an flexible RTOS API that does only support basic composable operations leads
to different mappings for the same RT-domain operation. We have already seen this situation for
the implementation of multiple directed dependencies. As OSEK has no canonical support for the
arbitrary combination of wait conditions, different implementation patterns (Figure 2.5a] [Figure 2.4}
[ISch11]]) with different preemption characteristics can occur in the real-world code. However, even
if there would be the compound operation WaitMultiple({bool. exp.)), legacy code could still
contain one of the composed patterns and developers could still use them.

The second issue, which is similar but distinct from the first one, is the “creative” use of the
RTOS API. As the RTOS interface has to stay flexible, the developer can use it to implement patterns
that are not covered by the RT task model. And while such constructs should not occur, they will, to
a certain degree, develop in real-world application code bases given enough time.

For example, in [Figure 2.5b, we see such a creative usage of the RTOS API. Here, the RTOS
periodically activates the Coordinator thread, which increments a counter variable c and activates
other threads in regular intervals. Furthermore, the activation interval of thread T3 is not even
constant but can be adjusted at run time by modifying the variable freq. Even worse, the variable c
is globally visible and could be set by other parts of the system to every possible value, as the range of
possible values is only noted in a comment. This usage pattern suggests that the developer had more
or less a time-triggered system in mind but his manager instructed him to use an event-triggered
system.

We see that the RT model and the implementation will diverge to a certain degree, since the
implementation must not only adhere to the real-time requirements but must also solve other
engineering necessities. Therefore, the implementation level becomes the ground truth for the
correctness and timeliness and it is essential to take a close look at implemented interaction between
RTOS and application.

2.2.3 Impact of Implementation Side-Effects

The third aspect of the mapping from RT to OS domain that must be considered for RTSs, are the
side-effects of the implementation on the real hardware with an existing operating system. Even if
the OS implements the desired functionality correctly, the side-effects of multiplexing multiple jobs
onto the processor, which also executes the OS itself, impact the properties of the RTS.

Hardware issues like cache-induced preemption delays [LMW96; Mue0O|] and pipeline-induced
delays [HWH95; ZBN93; [CP0O0]] are an issue that influences the WCET. However, they are nor-
mally [|CPO1[] considered on the task level where one job is analyzed in isolation and the effect of
the other system components is added pessimistically in the response-time analysis [JP86]]. However,
as we have seen, our RTOS does not manage tasks and jobs, but threads that execute mapped tasks
and jobs. Therefore, only an analysis of the implementation yields a final certainty of the system
properties.

An example where this influence of the implementation was neglected for a long time is the
rate-monotonic priority inversion [LMNO6]]. This problem arises if the RTOS uses two priority spaces
for ISRs and for threads, and if interrupts are serviced with a higher priority. In this scenario, a
thread with a high priority, which stems from a short periodicity in rate-monotonic scheduling, is
interrupted by an interrupt with a long minimal interarrival time. The ISR should actually have
a lower priority than the thread according to rate-monotonic scheduling, but the implementation
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violates the structure of priorities. There were several methods proposed to solve this problem by
changing the implementation and unifying the priority space [LMNO6; HLS11].

Also in this third dimension, we see that it is not sufficient to look only at the RT domain to
make statements about a RTCS, but we must inspect the deployed implementation for side-effects.

2.2.4 Analysis on the Implementation Level

In the last three sections (Section 2.2.1+-2.2.3), we have seen different problems that arise from the
transition between RT domain and OS domain:

* Ambiguous mapping of concepts and operations from RT domain onto RTOS services.
* Implementation necessities that requires an flexible RTOS API, which can be misused.

* Side-effects of the system software and hardware must be considered in the real-time domain.

From these observations, I draw multiple conclusions: First, I conclude that the implementation
of the RTCS as a whole is the only source of truth when it comes to making statements about
system properties. Second, we must analyze system properties on a more or less precise model
of the deployed RTCS; the closer our model is to the implementation the more precise are our
statements about the actual behavior. Third, the presence of deviations from the real-time model in
the implementation stems not only from bugs, but they are often born out of necessities and have to
be seriously.

In addition, the model-driven approach that I outlined in this chapter and that includes an
distinct mapping step from the RT to the OS domain does necessarily reflect the reality of software
development. Sometimes, the RT model is only used in the initial development phase and all
maintenance fixes are done on the implementation level such that the RTA continuously diverges
from the model. Some projects manually develop RT and OS model in parallel and keep them
manually in sync. And other real-time systems are developed in a bottom-up fashion purely on the
implementation level. However, for all these scenarios, the source code of the application is always
available, is always up-to-date, and is the fix point that covers all development models.

These observations led me to the approach of implementation-level interaction analysis of
the RTCS. I start out with the source code of the real-time application that is sprinkled with
system calls. These system calls are the “markup” language that the developer used to indicate
the desired interaction between RTOS and application. The investigated RTAs are result of the
RT-OS mapping process and already have assigned real-time properties, like thread priorities and
preemption thresholds. These a