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1
Introduction

The White Rabbit put on his spectacles. “Where shall I begin, please your
Majesty?” he asked. “Begin at the beginning,” the King said gravely, “and go
on till you come to the end: then stop.”

Alice’s Adventures in Wonderland, 1865, LEWIS CARROLL
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1.1 Motivation

1.1 Motivation

Figure 1.1 – Centrifugal Governor. A continuous control system to regulate the pressure in a
steam engine; the faster the governor spins, the higher rise the two balls, and the lower becomes
the steam flow. While James Watt already used the control principle in his steam engine in 1788,
different engineers mapped the principle to the technology of the day. Illustration from [Rou81,
p. 6].

Mechanical and, thereby, automated control of technical processes was one of the enabling
factors of the industrial revolution TODO: David S. Landes, Der entfesselte Prometheus, Köln 1973, S. 52.. For
his improved steam engine, James Watt1 used in 1788 the centrifugal governor (Figure 1.1) to keep
the rotational speed of the engine uniform [Rou81, p. 6]. A belt connects engine and governor such
that both spin with the same rotary motion. The faster the governor spins the higher rise the two
metal “flyballs”, which leads to an opening of the throttling valve. Thereby, an increasing stream
flow is subtracted from the engine’s steam input and a constant steam current fuels the engine.

The centrifugal governor is a perfect example of a dedicated control system with real-time
requirements. Its only task is to translate the rotation speed of the engine into a regulated steam
current fast enough that the engine runs with the desired conversions. If the governor fails to react
on a pressure increase in time, because of a slipped or broken belt, the input increases, the engine
accelerates, and even an explosion becomes possible.

We have built such dedicated systems as special-purpose systems. We designed and optimized
them for a specific environment as they must (and often only can) fulfill a single task. While this
specificity allows for a high tailoring potential of the system towards the desired use case, it comes
also with the imperative to specialize it. For a machine to be effective and efficient, the mechanical
engineer must combine, connect, and adjust different parts into a dedicated machine with a limited

1Although, James Watt is often cited as the inventor of the centrifugal governor, Christiaan Huygens already described it
1673 in connection to windmills [Bat45].
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1.1 Motivation

set of use cases. Therefore, these special-purpose systems came with high engineering and integration
costs.

The age of general-purpose machines took its first glimpse when Charles Babbage proposed the
Analytical Engine as the first memory-programmable computers [Bab64, cha. 8]. It took another
70 years, until Alan Turing showed that such a machine could calculate everything that is com-
putable [Tur36]. Once designed and built, a computer can fulfill different, and even multiple, tasks
without changing the physical design of the machine. In control systems, computers revolutionized
the field as they can implement every computable control function if connected to the appropriate
sensors and actors. Therefore, computers replaced the mechanical and pneumatic control systems of
the industrial age steadily and with an increasing pace.

ARM alone declared that they shipped a 100 billion chips from 1991 until 2017 [Hug17], with
half of them being sold in the last 4 years. Over 85 percent (Classic ARM, Cortex-M, Cortex-R) of
these are produced for the embedded market, where the computer is not the product itself but only
part of a larger stand-alone product. In terms of shipped units, the embedded market is the largest
segment for chip vendors [Ten00], although it remains mostly invisible for the customer. And with
the predicted and promised advent of the Internet of Things, we will scatter even more general
compute power all over the physical world.

However, with the decreasing pressure to built special-purpose mechanics to solve an engineering
problem came the illusion that tailoring is no longer necessary. We connect highly dynamic, and
even distributed, computer systems to the physical world and use programming languages with
a high abstraction degree to express our ideas. While these abstractions foster the productivity,
the time–to–market, and allow for the dynamic self-adaption of systems, they come at high costs.
The more complex and dynamic a system gets, the harder becomes a verification of its functional
properties, like correct operation or timeliness of the reactions. Furthermore, flexibility and run-time
adaptability can have a negative impact on the system’s non-functional properties, like memory usage
or energy consumption.

However, the underlying problem did not become less specific just because we solved them
with adaptable, dynamic, and easily reusable machines. Therefore, we often overfulfill the actual
requirements of the problem and use the capabilities of the employed compute systems partially.
This huge, wasted potential is a thorn in the eye for market segments that ship a high number of
units and are, therefore, sensitive to higher-than-necessary per-unit costs.

A prime example for a price sensitive sector is the automotive industry. Every modern car entails
around a hundred control units with at least one processor [Cha09]. If Volkswagen could reduce the
cost of only one of these processors in every sold car by a single cent, the company’s profit would
have been 107 000€ higher in 2017 [Akt17].

However, the price-per-unit is not the only factor, but we also must consider the cost for the
engineering. Unlike mechanical systems, a computer can more easily choose at run time the action
that should be performed. So, even if the concrete system always chooses the same action, the
engineer can include, without much thought, more functionality and postpone the decision to the
run time. While a centrifugal-governor valve with a Gardena plug is ridiculous even if “it always
comes with one”, this reflects the common practice in writing software. Manual tailoring is often
avoided, since it is too laborious and has the potential to introduce more bugs due to the complexity
of the software stack. Therefore, it is crucial to automate the analysis and the tailoring of software
systems towards the actual application requirements.

An area, where the potential for automated, in-depth analysis and tailoring is especially high,
are real-time computing systems (RTCSs). Since we have to guarantee that the RTCS reacts to some
stimuli with an upper timing bound, we already must have a large amount of knowledge about
the system to analyze it ahead of time. Even more, often all software components, like real-time

4



1.1 Motivation

operating system (RTOS) and real-time application (RTA), are inseparably combined into a single
system image, which is then loaded onto the microcontroller unit (MCU). If an update is necessary,
we generate a new system image and replace the old one entirely. This tight combination on the
implementation level provides us with a closed world assumption and eases system analysis and
tailoring.

However, the development of RTOS and application is often done in isolation by different
engineering teams, or even different companies. Therefore, the interweaving of both components
still remains limited and, far to often, the common-of-the-shelve (COTS) RTOS is used with only
minor adaptations, like a different feature selection. Thereby, we waste the potential for stricter
guarantees on functional properties and for improved non-functional properties.

In order to ease these problems, we must get a better understanding of the concrete application
and what functionality is actually requested from the system software. I aim to achieve this better
understanding by a flow-sensitive interaction analysis of RTOS and application. With the resulting
whole-system view, I want to achieve a better tailoring of the RTOS towards the actual application
requirements and give a better quantification of the actual implementation properties (e.g., response
times or stack consumption).

1.2 Research Context of this Thesis

This thesis takes place in the context of the AHA research project (DFG LO 1719/4-1, “Automated
Hardware Abstraction in Operating Systems”). There, we apply automated use-case requirement
analysis and specialization to whole software stacks (application, operating system, and hardware)
with a special focus on the system software. It is the project’s objective to find the highest possible
degree of software- and hardware specialization that is possible, beneficial, and desirable. For this,
we [�Fie+18] developed a taxonomy that is based on the notion of interaction to classify different
levels of system-software specialization.

First of all, we define what we mean by specialization (of system software): Specialization is specialization
an adaptation of the hardware platform, the operating system, or the application code, which
must meet three necessary conditions: (1) The specialized system exposes the same observable
behavior (like scheduling order) from the applications point of view. (2) The specialized system
eases the verification of the functional properties or shows improved nonfunctional properties
over the unspecialized system. (3) The specialized RTOS–hardware combination looses the ability
to produce the correct observable behavior for every thinkable application. Especially the third
condition distinguishes an optimization from a specialization. For example, we optimize an operating
system if we replace the semaphore implementation with a faster variant. However, we specialize
the operating system if we remove the semaphore subsystem altogether for an application that does
never use semaphores.

In Fiedler et al. [�Fie+18], we stated the third condition more precisely by introducing the
concept of interaction graphs. In these graphs, we connect RTOS abstractions (or instances thereof), interaction

graphslike threads, such that the edges indicate potential interactions, like preemption or wait-for relations,
between them. For example, Figure 1.2a shows the most general interaction graph for an example
RTOS specification with threads, interrupt-service routines (ISRs), and events. Here, threads can
wait passively for an event until another thread or an ISR signals the event. If an RTOS–hardware
stack supports all specified interactions and the unlimited creation of system objects, it fulfills the
specification and can execute every possible application.

However, most applications do not need an unlimited number of instances and they do not invoke
all possible interactions. For example, an application that never creates an event will never wait

5
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(a) General Specification
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(b) Specialized RTOS

Figure 1.2 – Interaction Graph for General and Specialized RTOS. The specialized RTOS is no
longer able to fulfill its function for applications that require events. Figure adapted from Fiedler
et al. [�Fie+18].

passively and no wake-up signal can ever be sent. If we disable event support (see Figure 1.2b), the
compiled RTOS still works perfectly for our application, but it does not meet the full specification;
applications with events will not work correctly. Summarized, a specialized RTOS instance exhibits
only a subset of the full interaction graph that the RTOS specification prescribes.

In this thesis, I investigate on a detailed variant of interaction graphs that grasps requirementscontext
sensitivity with a high precision, but is also highly specific to a single application: the context-sensitive interaction

graph. This variant does not only describe how abstractions interact but it goes down to the instance
and the source-code level. While the interaction graph from Figure 1.2b excludes waiting in general, a
context-sensitive interaction graph can, for example, expel waiting when a thread currently executes
a specific function.

1.3 Purpose of this Thesis

To illustrate the benefits of a context-sensitive interaction analysis, I will anticipate the integrated
response-time analysis from Chapter 4. In a nutshell, the worst-case response time (WCRT) is the
longest time a system takes to react upon some event, like an external interrupt. This duration covers

1

100 10

2

thread Low

200

thread High

Real-Time Operating System

activate

activate

(a) Flow Insensitive

1

100 10

2

thread Low

200

thread High

Real-Time Operating System

activate

activate

(b) Flow Sensitive

Figure 1.3 – Example for Response Time Analysis. The end-to-end response time for thread
low, which can activate the high priority thread, benefits from the flow-sensitive analysis of the
interaction between RTOS and application. When having only flow-insensitive information, we
must give an upper bound of 303 cycles, with flow-sensitive information we can sharpen this
bound to 213 cycles.
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1.3 Purpose of this Thesis

the execution time of all necessary and interfering tasks, all interrupts, and all hardware-induced
delays.

In Figure 1.3a, we see a system that consists of two threads and their control-flow graphs (CFGs),
where we annotated each node with its worst-case execution time (WCET). Furthermore, we know
that the low-priority thread activates (at some point) the high-priority thread and the RTOS will
immediately preempt Low in favor of High. For Low’s WCRT, we accumulate the duration of the
longest execution path in Low (103 cycles) and the longest execution path in High (200 cycles).

However, in a more detailed picture of the system (see Figure 1.3b), we see that Low activates
High only in the right branch of its condition statement. We know that the interaction (activate),
which the RTOS mediates in form of a context switch, is only invoked in a certain flow-sensitive
context. Therefore, we can give a much tighter bound for WCRT (200+ 13 cycles) as the worst-case
path from flow-insensitive situation cannot occur in reality.

The problem of the flow-insensitive variant, which leads to the more pessimistic WCRT estimation,
is the isolated execution-time analysis of each thread. After we pessimistically calculate an upper
bound for the execution time of each thread, we pessimistically accumulate it into an end-to-end
WCRT. Here, the flow-sensitive interaction analysis is able to overcome this segregation between
threads and allows for an integrated WCRT.

In this thesis, I will discuss the benefits of (control) flow-sensitive interaction analysis that spans
multiple execution threads for real-time systems. Thereby, I try to answer the following research
questions:

HOLD: Die Fragen sind nicht selbsterklärend. Und ausserdem hat man das Gefühl, man müsste sie auf die nachfolgende

Graphik abbilden. Aber eigentlich werden diese Fragen in mehreren Kapiteln beantwortet.

RQ1 Is a control-flow sensitive view on the RTOS–application interaction feasible for whole-system
analysis?

RQ2 HOLD: Mehr Anwendung über Kerngrenzen hinweg What analysis and run-time inefficiencies arise in
the real-time application from its segregation into distinct execution threads?

RQ3 HOLD: Nur Kernverhalten. Tailoring What beneficial non-functional RTOS properties can we achieve
if we have an integrated view on the whole real-time computing system?

1.4 Structure

Real-Time

System

AnalysisOptimization

Response
Time Analysis

Automatic
Kernel Verification

Application-Specific
Processor Pipeline

Fine-Grained
Stack Sharing

E

�

Figure 1.4 – Structural Overview of this Thesis

For this thesis, I investigated and validated my approach in four different projects (see Figure 1.4)
that make use of flow-sensitive interaction graphs. These projects are collated in two parts that focus
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1.4 Structure

on the analysis of the RTCS and its optimization. Thereby, I answer the stated research questions
cross-cutting to these parts.

Chapter 2 Fundamentals – Background and Context (pp. 11–30)
In this thesis, I analyze the interaction between application and operating system in event-
triggered real-time systems. Therefore, I provide an introduction to these systems, describe the
used system model, and discuss the mismatch between the view of real-time and implementation
engineer.

Chapter 3 Foundation – Fine-Grained Interaction Knowledge (pp. 31–57)
In this chapter, I recap the foundation of the control flow-sensitive interaction analysis and
describe different methods to grasp the RTOS–application interaction. As analysis result, I
describe two application-specific, flow-sensitive interaction models.

Part I Analysis (pp. 61–100)
In the analysis part, I use the interaction model to improve other static analyses of the RTCS to
give better (non-)functional guarantees for the examined system.

Chapter 4 SysWCET – Whole-System Response Time Analysis (pp. 61–95)
As first analysis chapter, I present the SysWCET approach as an integrated worst-case response
time analysis that spans from the machine-code level to the scheduling analysis. Furthermore,
I show how this method, which was developed for timing analysis, can also improve the
estimation of the worst-case response energy consumption.

Chapter 5 Automated Kernel Verification (pp. 97–99)
As second analysis chapter, I use the interaction graph to verify that a given kernel binary
exhibits the correct RTOS behavior. Thereby, the verification is done specifically for a given
application and does not rely on a semantic source-code analysis.

Part II Optimization (pp. 103–150)
In the optimization part, I use the application-specific interaction model to constructively improve
the non-functional properties of the RTCS implementation, like jitter and memory usage.

Chapter 6 Semi-Extended Tasks – Stack as a Shared Resource (pp. 103–131)
As first optimization of a non-functional property, I present a method to share stack-space
memory efficiently between different blocking threads. Therefore, I develop a fine-grained
method for finding upper bounds on the worst-case stack consumption and use a genetic
algorithm to find a good system configuration.

Chapter 7 OSEK-V – An Application-Specific Processor Pipeline (pp. 133–149)
In this chapter, I push RTOS specialization to its limits by replacing the RTOS implementation
with a behavioral-equivalent finite-state machine. Integrated into an application-specific
processor pipeline, the resulting system exhibits low kernel run-time overheads with a low
jitter.

Chapter 8 Summary, Conclusions, and Further Ideas (pp. 151–153)
In the last chapter, I summarize my contributions, give a conclusion to my research questions,
and point out further research ideas.
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1.5 Typographical Conventions

1.5 Typographical Conventions

For citations, an open triangle indicates that I was the main or one of the co-authors (e.g., [�DHL17]).
Newly introduced terms are highlighted in italic and the margin notes provide a course guideline of
the touched topics. Functions and program variables are set in with a monospace font (function(),
variable).
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2
Fundamentals

Background and Context

It is often asserted that discussion is only possible between people who have
a common language and accept common basic assumptions. I think that this
is a mistake. All that is needed is a readiness to learn from one’s partner in
the discussion

Conjectures and Refutations, 1963, KARL POPPER

In a nutshell, the goal of this thesis is to develop techniques that make beneficial use of context-
sensitive analyses results about the RTOS–application interaction. Hence, there are two areas that are
fundamental for the understanding of the proposed techniques: real-time systems and static-analysis
techniques that allow us to take hold of these systems programmatically. Furthermore, I will discuss
the diverging view of real-time and implementation engineer when it comes to the implementation
of a real-time computing systems, which leads to the observation that an implementation-level
analysis is advised.

The chapter is structured as follows: Section 2.1 introduces the real-time abstractions and how
they are usually mapped to concrete RTOS primitives. Section 2.2 explains the resulting mismatch
between real-time concepts and mapped implementation, and argues that we should analyze RTCSs
from the code level upwards. Section 2.3 briefly summarizes the chapter.





2.1 Real-Time Computing Systems

2.1 Real-Time Computing Systems

In general, an real-time system (RTS) is a technical system whose correctness depends not only on the
correct outputs but also on their timeliness [Mar65; LRG95]. In particular, every system that must
react correctly to an external event within a (guaranteed) bounded amount of time is a real-time
system. And while a functionally-correct implementation and working I/O interfaces are already
sufficient for the correct results, their timeliness is much harder to ensure. Thereby, the word prefix
“real-time” does not make a statement about the speed of the system’s operation, but only about
the maximal distance of triggering event and corresponding reaction on the physical-time (the real
time) axis. Hence, the timeliness of a RTS not only depends on its implementation but is also heavily
influenced by the operation environment.

It is this dependence on the timeliness, that lifts the reaction time from a non-functional property
to a functional property of the system. While a functional property fulfills a functional requirement
that is essential to the logical correctness of a system [CP09], non-functional properties are about
the quality of the provided system service. Thereby, the classification is not inherent to a certain
property, but it depends on the environment: Where the reactiveness of a graphical user interface
is a (desirable) quality of a webbrowser, it becomes an (essential) functional property for the user
interface of a fighter yet if is implemented with HTML5 and CSS.

While computer scientists often believe that every RTS contains a computer, we have seen in real-time
computing
system

Chapter 1 that also mechanical and pneumatic systems are subject to real-time constraints. Therefore,
we make a distinction between the RTS and the embedded RTCS [Kop11] that calculates the control
decisions. Figure 2.1 gives an overview how the different concepts are enclosed into each other. The
whole system, which measures and controls the environment in a timely fashion, is the real-time
system. The real-time computing system executes the required control task with the help of one or
multiple processors, which are connected via sensors and actors to the environment. The real-time
application (RTA) is a program that implements one or multiple control tasks in software. The
real-time operating system (RTOS) manages the execution of the RTA and exposes a system-service
interface to provide access to the hardware and to manipulate the executor mechanism. As this thesis
focuses exclusively on systems with a RTCS, I will use the terms RTCS and RTS interchangeably.

real-time system

real-time computing system

en
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m
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t

en
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ro
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real-time application

real-time operating system

sensor

sensor
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Figure 2.1 – Real-Time System

There are at least three different lenses under which computer-implemented RTSs are viewed:
control theorist, real-time (scheduling) analyst, and implementation engineer. From a high-level
perspective, these three points of views reflect the development phases of a RTCS in a waterfall
development model [Roy70]. The control theorist grasps the physical dynamics of the controlled (ex-
ternal) object and chooses an appropriate controller (e.g., a PID controller [Min]). Since controllers
are normally designed in the continuous domain, the theorist provides a time-discretized implemen-
tation, which the RTCS must invoke periodically. The real-time analyst is confronted with one or
multiple software-implemented controllers and their timing requirements. Under an appropriate
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task model (e.g., the sporadic task model [Mok83]), he chooses task parameters (e.g., priority), and
makes a statement about the schedulability of the system; is it possible to meet every deadline for
every task? The implementation engineer takes the RTA and maps the task-model concepts to the
available RTOS abstractions, like threads and semaphores. With every step, we decrease the level
of abstraction as we get closer to the actual implementation on the deployed hardware. However,
we also get closer and closer to the eventually operated RTCS and, therefore, the actual run-time
behavior.

As this thesis focuses on the interface between real-time analysis and implementation engineer, I
will give an overview of commonly used real-time terminology and its mapping to RTOS concepts
and primitives. For this, I will stick to the Burns standard notation [Dav13] as close as beneficial
and base the description on the sporadic task model [Mok83]. Table 2.1 gives an overview over of
the most important concepts.

2.1.1 Real-Time System Concepts

In digital control systems, values cannot be calculated continuously, but we must discretize thetasks and jobs
calculation into work packages, called jobs. Upon some external event, a job Ji is released at a certain
time t r and must be completed before its relative deadline Di is elapsed at t r +Di . Since the released
jobs are highly regular, we use templates in form of tasks for instantiating jobs. Furthermore, all jobs
that are instances of the same task τi inherit their relative deadline, and other real-time properties.
The entirety of tasks within an RTCS constitutes its task set τ.

One of the most important distinction for RTCSs is the criticality of deadline misses. Accordinghard real-time
to this characteristic, we distinguish between soft, firm, and hard real-time systems [HR95]. For
a hard RTS, it is catastrophic, in the sense of extremely high costs, to miss just a single deadline.
Therefore, a multitude of theoretical analyses methods must be applied before the deployment to
guarantee the timely execution of all jobs. The classic example of a hard real-time system is the
break controller of a car. There, a missed deadline in a critical situation can provoke a crash and
might lead to (deadly) injuries.

A less strict class is the firm RTS, where the result of a job becomes useless immediately after its
deadline has passed without completion. An example for a firm RTS is a robot at an assembly line
that assembles the current work piece incorrectly if it cannot calculate its movement trajectory in
time. However, with specific task models, like the “(m,k) firm deadlines”-model [HR95], we still can
make guarantees about the quality of service.

Parameter Description

τ task set set of all tasks that a RTCS executes
τi task static description for a class of jobs; each task release

instantiates a job; sporadic and periodic tasks
pi period time between two releases of a periodic task
Ii minimum interarrival time minimum time between two releases of a sporadic task
Ci worst-case execution time longest computation time of a released job if it is exe-

cuted without interference
Jk job one instance of one task, released at time
Dk relative deadline maximal time between release and completion of a job

Table 2.1 – Important Real-Time System Parameters
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The most forgiving class are soft RTSs. Their quality of service degrades if deadlines are missed
in operation and there is no discrete point in time when the utility function of a job result drops
to zero. For example, the experience of computer games degrades if the game logic misses more
and more frames and the player gets continuously more frustrated. However, as long as the game
remains playable it fulfills its purpose.

From the reflection on different timing-strictness classes, we see that RTCS elevate the otherwise
non-functional property “timeliness” increasingly to a functional property. An hard RTS that does
not meet its deadlines is not a functionally correct system.

It is the chore of the RTOS to schedule the released jobs onto the available processors such that dependencies
all deadlines are met. However, often the deadline of a job is not the sole constraint the RTOS must
obey, but a job can also depend on the execution of other jobs. While this was explicitly excluded in
early task models [LL73; Mok83], mechanisms to include task dependencies were developed over
time [CL90; Bak91; HKL91; Aud+92].

Thereby, we can distinguish between directed and undirected dependencies [Sha+04]. Both of
them express that the execution of two tasks are not independent and their relationship has to
be considered by the real-time analyst. A directed dependency, or precedence, between two tasks
ensures that the dependent job is executed only after the dependee has finished [Aud+92]. With
DAG task models [Sti+11; Bar10], dependencies were introduced on the intra-task level. However,
a general understanding of inter-task precedence is still an open topic of research [Sha+04].

An undirected dependency expresses resource sharing constraints between two tasks and prohibits
the interleaved execution of their jobs. Such mutual-exclusive constraints can, for example, arise if
both tasks access the same object or memory region. However, such mutual-exclusive constraints
can be problematic in the context of real-time systems as waiting times must be bounded [SRL90a]
and deadlocks avoided [Bak91]. While these undirected dependencies can be expressed on the task
level [WS99], they are normally declared programmatically between fine-grained sections of task
code [SRL90a; Bak91].

If we add dependencies to a RTCS, we can use them as a distinguishing feature between tasks:
While complex tasks have at least one dependency on another task, simple tasks have no dependencies
and can, therefore, be scheduled with considerably fewer constraints [Kop11, cha. 9.2].

Until now, we have ignored the causes that lead to a job release. We have already discussed that task
activationthe control theorist hands a discretized implementation of the controller to the real-time analyst for

periodic activation. Therefore, RTCS provide the concept of periodic tasks, which are released with
period pi and an offset φi , to cover such application patterns [LL73; BB97].

However, as not all jobs fit into this fixed grid of periodic tasks, RTCSs provide sporadic tasks [Mok83].
For a sporadic task, we do not know the exact release time, but only a minimum interarrival time ii .
As the period pi of a periodic task is its minimum and maximal interarrival time, the sporadic-task
model is a generalization of the periodic task model. However, it is still useful to distinguish these
two task types as they are often mapped differently to RTOS abstractions.

The task set and its inter-task dependencies describe the logical structure of the RTCS. However, worst-case
execution
time

the real-time analyst also has to consider the work-load that this structure carries. For this, she
quantifies the computational requirements of each task in its WCET Ci; the longest job execution
time. While the actual WCET is often hard to obtain [Wäg+17], we normally use a statically-derived
safe upper bound. Thereby, the WCET does explicitly not include delays that stem from preemptions
or interference with other jobs. Unlike the other task parameters, the WCET is hardware dependent
and must capture the influence of processor pipelines, caches, and branch predictors on the task
code. We will come back to the WCET analysis topic in Chapter 4.
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2.1.2 Event-Triggered Real-Time Operating Systems

The concepts from the last section (Section 2.1.1) are abstractions that the real-time analyst uses
as a model of the RTA. She adheres to the chosen task model and captures the structure and the
real-time properties of the system. In the scheduling analysis, the analyst derives other real-time
properties (e.g., priorities) and makes guaranteed statements about the system’s timeliness.

As next step in the product development, the implementation engineer maps the RTA onto a
concrete hardware in such that the system adheres to chosen scheduling and task model. For this,
about 67 percent of the embedded developers make use of some kind of OS or RTOS [AEe17]2.
An RTOS, or real-time extension to an existing OS, provides system services and interfaces that
allow the implementation of the RTA. Although many open-source and commercial RTOSs exist,
most provide similar abstractions, like threads and interrupts. For this thesis, I will stick to the
notation and terminology of OSEK [OSE05] systems, since my system model, which I will describe
in Section 2.1.3, is also based on this RTOS standard.

The most basic distinguishing dimension of RTOSs is the real-time architecture [Sch11, cha.
3.4]. The two most prominent representatives for real time (RT) architectures are time-triggered
RTOSs and event-triggered RTOSs. The two differ in their scheduling time: time-triggered systems
schedule offline, event-triggered ones schedule online at run-time. As this thesis concentrates on
event-triggered systems, I will only briefly outline the time-triggered RTOS architecture to highlight
the decisive features of event-triggered systems.

Time Action

0 Start and switch to thread τ1

4 Start and switch thread τ2

6 Enforce deadline D2 = 2 for τ2

6 Resume to τ1

8 Enforce deadline D1 = 6 for τ1s

Table 2.2 – Example for a Time-Triggered Scheduling Table

The central data structure for a time-triggered RTOS is its scheduling table, which describes whattime-triggered
action should be taken at a specific point in time [BS88; ATB93]. Therefore, they are also referred to
as table-driven RTOSs. As all scheduling decisions are known before run time, the timeliness of the
system can be ensured by analyzing the scheduling table and the task’s WCETs. Therefore, the highly
safety-sensitive civil avionics defaults [Pri08] to use table-driven RTOSs, like ARINC 653 [AEE03],
which also sparked interest in the space community [DR05].

The scheduling table links relative time offsets to actions like a thread switch or the dynamic
enforcement of a deadline. Table 2.2 shows an example of such a scheduling table. There, two threads
with a combined WCET of 8 time units are executed interleaved. At run time, a hardware-triggered
timer ISR carries out the action of one table row and configures the timer for the next table row.
If the execution reaches the end of the table, it wraps around and starts over in the first row. As
no other RTOS mechanisms are provided at run time, the table must be constructed such that all
directed and undirected dependencies are fulfilled.

Besides the good analyzability, such a table-driven mechanism is also simple to implement and
results in small run-time overhead. However, the generation of scheduling tables is considered a
hard problem [LW82] and the tables quickly become large. Therefore, not only optimal strategies
for table generation were proposed [XP90; AS99], but also heuristics [CK88].

2For the remaining 33 percent, 86 percent said that the application is simple enough to not require OS services.
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Compared to the time-triggered architecture, event-triggered systems avoid the large tables by
delaying all scheduling decisions to the run time. There, an online scheduler decides on certain
scheduling events, like a system call or an interrupt, which thread should be executed next according
to the scheduling strategy. Therefore, event-triggered systems allow for lower reaction times as an
important thread can be dispatched immediately upon some external event instead of waiting for its
table row to be executed.

Another benefit of event-triggered systems, which might be another reason for their popular-
ity [AEe17], are their OS abstractions and their interface. They resemble the well-known system-call
interfaces that are known from general-purpose operating systems. In the case of the POSIX operating-
system standard, event-triggered real-time extensions were even integrated into a general-purpose
OS specification [98].

In the following, I will describe the important abstractions that an RTOS must provide to imple-
ment an event-triggered real-time system. Thereby, I will sketch how the concepts from the real-time
domain are mapped onto the RTOS abstractions.

2.1.2.1 Activities: Interrupt Handlers and Threads

One of the core chores of operating systems is the multiplexing of limited hardware resources.
Multiple applications or other users require the operation of a single hardware component, which
often cannot be shared between different users at the same time. Thereby, the processor is the most
basic component to allocate and multiplex, as only running software can ask for more resources.
Therefore, timesharing operating systems were invented early on [CMD62; Org72; RT74].

In these systems, the basic entity of processor-time allocation is the thread. In order to service threads
multiple threads on a single CPU, the RTOS switches between these threads and, thereby, performs a
time-division multiplexing of the CPU. We call the selection of the currently running thread scheduling
and the enforcement of this decision the thread dispatching.

In its core, a thread is a control flow whose execution is managed by an operating system;
without an OS, there can be no threads. Thereby, a control flow an active entity that executes on
an processor and is constituted by a program counter that points into the program memory and
some execution context. For most operating systems [Dun+06], at least the register contents and a
run-time stack are associated with a thread, but more OS resources, like an address space, may be
referenced. On the thread dispatch, the execution context of the currently running thread is saved
to memory, and replaced by the context of the dispatched thread.

The CPU multiplexing by the OS gives every thread the illusion of being alone on its own virtual
CPU. For the thread, it seems that instructions from its program memory are continuously executed,
since it cannot detect being stalled when it is currently suspended.

Besides threads, there is another kind of activity the RTOS manages: hardware interrupts. With interrupts
an interrupt request (IRQ), the periphery signals the processor the occurrence of an external event.
The interrupt controller detects this external signal and informs the CPU about the IRQ. If the current
processor state allows for it, the CPU saves parts of its execution state and executes an interrupt-
service routine (ISR) that is associated with the IRQ source. Normally, these ISRs are installed by the
RTOS and it is a central RTOS chore to synchronize between service requests from the hardware
and the software.

From the RTOS point of view, both concepts, threads and interrupts, are very similar and re-
searchers have show that they can be mapped onto each other [KE95; Hof+09]. Therefore, I will
use the term activity as the generalization for these RTOS-managed activities.

When we want to map tasks to threads, we face the problem that these concepts are of a task vs.
threaddifferent category. While a task is a static description of work, a thread is a currently executing
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activity and, hence, more like a job. Therefore, either the RTOS must provide some kind of persistent
threads or we have to mimic this with other OS services. Figure 2.2 shows both cases. If an RTOS
has native task support, you can release a job from a static task description as a thread activation,
which terminates itself on completion. If there is at least one thread activation outstanding, the
RTOS thread is runnable, otherwise it is suspended. One example of RTOS with direct task support is
the OSEK OS standard [OSE05].

For an event-triggered system, we use an online scheduling strategy that decides upon thepriorities
system state and different real-time parameters what thread should be dispatched next. For this, the
priority-driven online strategies and their theoretical analysis was an important milestone for the
real-time domain [Sha+04]. Thereby, the real-time analyst derives priorities as secondary parameters
from the primary real-time parameters (e.g., period, deadline, or WCET). Attached to tasks, jobs, or
parts of jobs, the analyst guarantees that the real-time system will meet all deadlines if the scheduler
adheres to the priorities. The implementation engineer then ensures that among all active jobs,
however they are mapped to RTOS abstractions, the highest-priority job is executed. This job runs
until it terminates or an even higher-priority jobs is released and preempts the, now lower-priority,
job.

We already see that the real-time analyst, as well as the implementation engineer have their
parts in priority-driven scheduling. The analyst decides which entities (tasks or jobs) have attached
priorities, where rescheduling should take place, and what are the priorities. The implementation
engineer maps the tasks and jobs to control flows and implements an online scheduler that enforces
the policy for this mapping. If the RTOS fails to enforce the mapping and a low-priority job is
executed although a high-priority job is pending, we speak of a priority inversion.

The decision where to attach the priorities, distinguishes different classes of real-time scheduling:
For task-level, fixed-priorities systems, we attach the priority to the task and all released jobs inherit
this priority. Therefore, we also call this class static-priority systems. The most prominent example
how to derive static priorities from the real-time parameters is rate-monotonic scheduling [LL73],
which assigns the highest priority to the task with the shortest period. However, also other priority-
assignment policies like deadline-monotonic scheduling are availabe [LW82].

The other important class are the job-level, fixed-priority systems where a priority is derived
for every released job. Due to this dynamicality, we call such systems also dynamic-priority systems.
Here, the most important representative is the earliest deadline first (EDF) policy [LL73]. For EDF,
the absolute deadline becomes a job’s priority; the closer the deadline is to the current time, the
higher is a job’s priority.

Task(T1) {
...
TerminateTask ();

}

ActivateTask(T1)

re
le
a
s
e

(a) with task support

void task_T1 () {
while (true) {

WaitForWakeup ();
...

}
}

WakeupThread(T1)

T1 = CreateThread(&task_T1)

re
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a
s
e

(b) without task support

Figure 2.2 – RTOS with and without Native Task Support
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Although, dynamic-priority systems can achieve optimal utilization [LL73] for some classes of
task sets on uni-processors, it is argued that fixed-priority systems are the most common choice in
industry [Bra11, cha. 1.2][OSE05; Sak98]. One reason, as Brandenburg [Bra11] suggests, is the ease
of implementation. While we can implement the ready list for a fixed-priority system with a bit-mask,
we must spent more development effort to get a fast implementation for EDF scheduling [Sho10].
In this thesis, I will concentrate on fixed-priority systems.

2.1.2.2 Control: Job Release and Directed Dependencies

With thread and priorities, our RTOS already provides abstractions to execute jobs coordinated.
However, we also have to release jobs and express directed dependencies between them with the
help of RTOS services. If our RTOS already provides a task abstraction, like discussed in the previous
section, we release a job by starting the corresponding thread when a periodic or sporadic event
occurs.

For sporadic tasks, the activating event is external to the RTCS and we do not now the exact release
time. In actual implemented RTCS, peripheral components (e.g., digital switch or an acceleration
sensor) send these events to the processor and the RTOS receives and interprets them, normally
with the help of specialized interrupt-detection hardware. Upon a job release, it depends upon the
RT model, whether the RTOS must reschedule immediately or if the reschedule happens at some
later point in time (e.g., next system call).

This direct temporal connection between the external event and the job release is the defining
factor for an event-triggered system. In a purely time-triggered systems, we have to include table
entries to poll for the activation of sporadic tasks. Furthermore, we must reserve time budgets in the
table to execute sporadic tasks by using, for example, a sporadic server [SSL89].

For periodic tasks, an event-triggered RTOS provides the possibility to activate threads periodically.
Alarm objects, like the OSEK standard [OSE05] specifies them, provide such a timing service.
Configured with the period and the offset of a periodic task, the RTOS releases jobs for a specific task
in equidistant time intervals. Often such timing services, not only allow periodic thread activations,
but they also offer one-shot timers and abortable alarms.

Unlike a time-triggered, table-driven RTOS, the periodic activation only releases periodic jobs
and does not directly lead to a preemption or resumption decisions. Take, for example, the rows for
T = 0 and T = 6 in Table 2.2: both rows result in the dispatch of the τ1 but only the first one is
responsible for the job release.

Besides the periodic and sporadic release of a job, an RTOS should also provide mechanisms
to express directed dependencies. If a task has only one predecessor that must have finished its
execution beforehand, we can just activate the dependent thread after the dependency is fulfilled
(see Figure 2.3a). For this, the RTOS must provide a system call for activating a thread from a thread
context, additionally to the activation from a ISR context. As these synchronous activations are
similar to external events, [Sch11] also refers to them as logical events in comparison to physical
events.

However, with synchronous activations, we are still not able to express multiple directed de-
pendencies. While an RTOS could provide annotations for such task dependencies, most RTOS do
not provide such a descriptive interface. Instead, we can use mechanisms for passive waiting and
inter-thread signaling to mimic multiple dependencies on the implementation level. When an RTOS
provides such a mechanism, a thread can voluntarily wait on a waiting object. Thereby, the RTOS
transfers the thread into the waiting state until another thread (or ISR) signals the waiting object. waiting
Until then, the thread is not in the ready state and the RTOS excludes it from scheduling decisions.
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Task(T1) {
...

ActivateTask(T2);

TerminateTask ();

}

Task(T2) {
...

TerminateTask ();

}

E
IRQ

dependencyrelease

(a) Single Dependency

Task(T1) {
...

SetEvent(T3 , E1);

TerminateTask ();

}

Task(T2) {
...

SetEvent(T3 , E2);

TerminateTask ();

}

Task(T3) {

WaitEvent(E1);

WaitEvent(E2);
...

}

E
IRQ

E
IRQ

dependency

depen
dency

release

release

(b) Multiple Dependencies

Figure 2.3 – Mapping of Task Dependencies with RTOS Services

The classical example for such a waiting object is the semaphore [Dij65], which also allows for all
other kinds of inter-thread synchronization.

For the RTS mapping, we have to use distinct patterns of waiting system calls to express multiple
dependencies. For example, for an AND dependency on two tasks, the dependent thread sleeps on
the occurrence of two event signals in sequence (see Figure 2.3b). As long as the events are not
signaled, the thread is waiting and keeps preempted. After each predecessor thread has signaled one
event object, the waiting thread proceeds after both signals occurred. Thereby, the signal must be
buffered by the RTOS to make the reception of signals order invariant and to avoid the lost-wakeup
problem [Lam67].

2.1.2.3 Synchronization: Mutual Exclusion

As the last aspect of our abstract real-time model, we must implement undirected dependencies. An
undirected dependency between two tasks instructs the RTOS to prevent the interleaved execution
of jobs from these tasks. So even if a job from a higher-priority job gets released, it is not scheduled
before the lower-priority job finishes if they share an undirected dependency. While undirected
dependencies mostly stem from application requirements, like access to a shared indivisible resource,
they may also arise from real-time concepts like preemption thresholds [WS99], which increase thepreemption

thresholds schedulability of task sets. There, each task gets a preemption priority that it uses to preempt other
tasks and a preemption threshold that it uses to prevent preemption by other tasks. Thereby, all
tasks with the same preemption threshold cannot be active at the same time.

Since the mutual exclusion of program sections is a common synchronization problem, most
operating systems provide blocking locks for the application to synchronize their threads. At the
beginning of the to-be-protected program section, an activity takes the lock and releases it only at
the section end. As long as another activity holds this lock, the RTOS transfers other lock-requesting
threads to the waiting state; hence the name blocking lock. When the lock holder gives the lock
back, the RTOS wakes up one of the waiting threads and hands over the lock ownership.
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It is one distinguishing feature of such mutual-exclusion mechanisms, if other threads are able
to make requests for an already acquired lock, or if the scheduling avoids this situation altogether.
Examples for the former class are semaphores [Dij65] and priority-inheritance locks [SRL90b].
However, as these mechanisms are prone to deadlocks, where two thread hold one lock each and
wait circular for the lock of the other thread, the systems community developed mechanism in the
latter class, like non-preemptive critical sections or stack-based, priority-ceiling locking [Bak91].

While time-triggered systems can avoid locking by constructing the scheduling table such that
all undirected dependencies are already full filled, event-triggered systems require such explicit
synchronization mechanisms in the application code. However, they also give the implementation
engineer a much more fine-grained control (down to the statement level) about mutual-exclusive
sections. For the static analysis, they are explicit annotations in the application code and can benefit
the blocking-time analysis of a system [BA10].

2.1.3 The OSEK Operating-System Standard

While the discussed abstractions (i.e., threads, ISRs, activation, signaling, and mutual exclusion) are
present in most RTOSs, many provide additional features and have, more or less slightly, deviations
in their semantics. To make things concrete but not too pinned down by a single implementation, I
chose the OSEK operating-system standard [OSE05] as a well-defined interface for the analyzed
real-time applications. Throughout the thesis, I will use it for example systems and it also defines
my investigated operating-system model.

Starting in 1993 [Joh98], the German automotive industry started an initiative to harmonize the
software architecture used in automotive electronic control units (ECUs) to increase the portability,
extendability, and reusability of software components. The OSEK3 standard covers communication
between ECUs [OSE04b], the network management [OSE04c], and the operating-system inter-
face [OSE05].

The OSEK-OS standard, which I will just refer to as OSEK standard from now on, is specified as a
single-core operating system. However, the AUTOSAR [AUT13] specification, which is the successor
to OSEK, extends the OSEK world with multiprocessor support. Nevertheless, the AUTOSAR standard
describes a partitioned multi-processor instance, where an OSEK-OS instance is spawned on each
core and threads cannot migrate between cores. Therefore, I focus on the single-core OSEK standard,
which still reflects the state-of-the-art in automotive ECUs and automotive safety-critical real-time
systems.

While OSEK was developed by practitioners, it directly supports a wide range of concepts from the
real-time domain and is therefore a good base for my work on the interaction analysis of real-time
systems. Therefore, I will in the following describe OSEK, its design philosophy, and its system
services in detail as far as they are important for this thesis.

The most drastic paradigm change for developers that come from the world of desktop computing static
operating
system

is that OSEK is a static operating system. This means that all RTOS objects, like threads, locks, and
wait objects, must be declared before run time. They are known by their declared name and no
additional objects can be allocated at run time. While this looks like a harsh restriction on the
flexibility, the common real-time task models and most scheduling tests also prescribe a fixed number
of tasks. Furthermore, this large amount of ahead of time knowledge allows for a memory-efficient
implementation of the RTOS, as all objects can be stored in statically allocated arrays. Hence, no
dynamic data structures, like linked lists, or memory allocators are required to manage the OS

3OSEK stands for “Offene S und deren Schnittstellen für die Elektronik in Kraftfahrzeug” (engl., “Open Systems and the
Corresponding Interfaces for Automotive Electronics”).
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objects. As OSEK targets small embedded systems, this focus on memory efficiency is considered as
one of the major success factors of OSEK [DMT00].

Furthermore, an OSEK-compatible RTOS does not only know all system objects but also their real-
time properties, like priorities or preemptability. The developer has to declare the system objects and
their properties in a domain specific language called OSEK implementation language (OIL) [OSE04a],
which is interpreted by a system generator. A short example of an OIL file is shown in Listing 2.1:
task T1 has a static priority of 2 and is fully preemptable.

Listing 2.1 Example for an OIL file

1 TASK T1 {
2 PRIORITY = 2;
3 SCHEDULE = FULL;
4 }

OSEK directly supports tasks instead of providing only a thread abstraction. Behind the declara-Activities in
OSEK tion of task T1 in Listing 2.1, an entry function with the same name is present within the application

source code. For each released job, the entry function starts from the beginning in an newly created
thread until it terminates , which the RTOS schedules under a fixed-priority policy. Rescheduling
only takes place at well-defined rescheduling points (i.e., system-call invocations, alarm expiration).
After the job finishes its execution, the thread is destroyed and no data is left on the execution stack.
While OSEK tasks are threads with a statically-defined way to create them, they are meant to be
continuously created and destroyed on every job execution.

OSEK specifies two kinds of tasks with different abilities: basic tasks and extended tasks. Basic
tasks always execute in a run-to-completion manner and are not allowed to wait passively. This
means that they execute instructions until they terminate themselves, but they are not allowed to
invoke a blocking system call such that they never enter the waiting state. Thereby, basic tasks can
all be started on a single shared stack; an aspect of OSEK that we will revisit in Chapter 6. Extended
tasks, on the other hand, do not have this non-blocking restriction and are allowed to invoke all
system services.

Basic tasks and extended tasks have several real-time properties: Besides the static priority which
the job inherits on creation, tasks can be marked as non-preemptable. While a preemptable task can
be preempted in favor of a higher-priority task at every rescheduling point, a non-preemptable task
is not removed from the processor until it terminates or enters the waiting state. Thereby, OSEK
allows for fully-preemptable, mixed-preemptable, and fully–non-preemptable systems. If a task is
marked as AUTOSTART, the RTOS releases one job at boot time. Furthermore, the developer must
also declare the maximal number of pending jobs that can released per task.

Besides tasks, OSEK also supports the definition of application-specific ISRs, which again come
in two different abilities: A category-1 ISR is not allowed to invoke any system call, has no influence
on the scheduling, should provide the least amount of overhead for the developer. The category-2
ISRs (ISR2) can invoke a limited set of system calls (i.e., task activation, event signaling) in order to
influence the scheduling.

For the synchronous management of jobs, OSEK provides three system calls: ActivateTask(〈TASK〉)Control in
OSEK activates a thread, TerminateTask() immediately finishes the execution of the currently running

job, and ChainTask(〈TASK〉) combines the self-termination and the activation of another thread
atomically. Thereby, the thread-activating system calls are the mechanism to express simple directed
dependencies. Table 2.3 gives an overview about these system calls, as well as about the other
important system calls.
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System Call Arguments Description

ActivateTask TASK Releases one job of the specified task.
TerminateTask – Self Termination of a job.
ChainTask TASK Atomic combination of ActivateTask and TerminateTask

SetRelAlarm ALARM, offset,
period

Configures an alarm relative to the current time which
triggers periodically after the initial offset.

SetAbsAlarm ALARM, offset,
period

Like SetRelAlarm, but with an absolute starting time.

CancelAlarm ALARMTYPE Disable an armed alarm.

WaitEvent EVENTMASK Transfer currently running job into the waiting state
until another job or an ISR signals one of the events.

ClearEvent EVENTMASK Reset signaled events from the jobs event mask.
SetEvent TASK,

EVENTMASK

Signal all specified events to the given task.

SuspendAllInterrupts – Blocks ISR1 and ISR2 interrupts.
ResumeAllInterrupts – Unlocks ISR1 and ISR2 interrupts.
GetResource RESOURCE Acquires a resource and boost the jobs priority to the

ceiling priority
ReleaseResource RESOURCE Gives a resource back to the RTOS and decreases the

dynamic job priority.

Table 2.3 – OSEK System Calls. Selection of important OSEK system calls. Arguments in SMALL

CAPS are references to system objects that are declared in the OIL file.

As timing service for periodic tasks, OSEK provides counters and alarms. Each counter is an integer-
typed variable that overflows to zero if it reaches an predefined upper bound. An hardware-timer
ISR increments all counters in equidistant time intervals and performs all necessary downstream
operations. Statically connected to one counter, an alarm object has a period, an offset from t = 0,
and two boolean flags that indicate whether the alarm is periodic and is armed. While we can
manipulate these parameters dynamically via system calls, each alarm is statically connected to
invoke one of two actions on expiration: activate a thread or signal an OSEK event.

For extended tasks, OSEK provides the possibility to wait passively for events, which are similar
to POSIX signals. Every thread has a private set of signaled events, which he can (partially) clear
with ClearEvent() and others can extend with SetEvent(). On job-execution start, the task’s event
set is implicitly cleared [OSE05, p. 27], which is an inherent difficulty for avoiding the lost-update
problem. If a thread waits for an event with WaitEvent(), it enters the waiting state if the requested
event is not in the thread’s event set. The RTOS wakes the thread if another activity signals the
requested event.

Furthermore, WaitEvent() takes not only a single event but a set of requested events and wakes
up/continuous if at least one requested event is signaled; WaitEvent() checks an OR-condition on
the task’s event set. For an AND-condition, the implementation developer has to invoke WaitEvent()
multiple times with different event sets (see Figure 2.3b). Thereby, the events are the mechanism to
express arbitrary directed dependencies.
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The OSEK standard mandates, that the developer has to declare the list of events that a thread can
wait on. Due to the private nature of a task’s event set, where the same event (name) can be signaled
to different threads, we must address each send and received event via the tuple (thread, event).

For the expression of mutual exclusion, OSEK provides two different mechanism: ISR blockadesMutual
Exclusion in
OSEK

and OSEK resources. While the former exposes the CPU-level synchronization mechanism to the
application, the latter works purely by influencing the scheduler.

For ISRs, OSEK provides system services to block and to unblock the execution of ISRs. Thereby, the
user can choose to delay only ISRs of category 2 (e.g., SuspendOSInterrupts()) or all interrupts
that the hardware supports disabling for (e.g., SuspendAllInterrupts()), including hardware
timers.

With resources, OSEK provides a second mechanism to express the mutual exclusion of pro-
gram sections. OSEK resources are thread-level locks that use the stack-based resource proto-
col (SRP) [Bak91] to avoid priority inversion and deadlocks by construction. The SRP is an extension
to the priority ceiling protocol (PCP) [SRL90a] that eases the implementation and minimizes the
number of context switches.

For the SRP, each lock must know all possible lock-holding tasks to calculate the lock’s ceil-
ing priority as the maximum of the task’s static priorities. Whenever a thread acquires the lock
(GetResource()), we boost the thread’s dynamic priority to the ceiling priority. The OSEK scheduler
schedules according to the dynamic priorities, which the RTOS initializes for every job with the
static priority of the released thread.

After the acquisition, the currently running thread has the highest priority of its resource group
and no other thread that could acquire the lock will be scheduled. Therefore, the acquisition of a
resource will always succeed immediately and a thread will never wait for a resource to become
available. Thereby, deadlocks cannot occur as threads cannot enter the waiting state due to an
acquisition request.

OSEK resources come in two different flavors: A normal resource must be acquired explicitly by
a system call, and we use it to annotate program sections. Besides that, OSEK also provides internal
resources which are implicitly taken by a thread if we dispatch it. Therefore, implicit resources are
equivalent to preemption thresholds [WS99], which was also shown by Gai, Lipari, and Di Natale
[GLD01].

Furthermore, OSEK always provides a RES_SCHEDULER resource that every thread can acquire.
Therefore, its ceiling priority is the highest priority in the system, and acquiring it effectively becomes
a non-preemptive critical section.

In order to reduce the resource consumption for smaller ECUs, OSEK defines four conformance
classes that imply an increasing amount of RTOS complexity. In the basic conformance class 1 (BCC1),
the RTOS only supports basic tasks and, hence, has no support for events. Furthermore, multiple
activations and more than one task per priority level are only mandated in the basic conformance
class 2 (BCC2). With the extended conformance class 1 (ECC1), the RTOS supports extended tasks
and event objects. However, support for multiple basic-task activations or multiple tasks per priority
level come only in the extended conformance class 2 (ECC2). For this thesis, I will concentrate on
BCC1/ECC1 systems.

2.2 From the Real-Time to the Operating-System Domain

In Section 2.1.1, we discussed the real-time analyst’s mental model of RTSs. And although event-
triggered operating systems (Section 2.1.2) are close to this model, problems arise from the transition
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between both domains. These difficulties are a call to action to take a closer look not only on the
real-time application in the RT domain, but also on the implemented application in the OS domain.

2.2.1 Ambiguous Mapping of Real-Time Concepts

Given a RTCS in the real-time domain, different mappings for tasks, activations and dependencies
onto RTOS and hardware mechanisms are possible. Figure 2.4 illustrates the general process of
mapping from the real-time domain to the operating-system domain and shows an example system
with two possible mappings. In the real-time domain, we have three periodic tasks (T1-T3) and one
sporadic task (T4). Furthermore, the execution of T3 depends on the completion of T1 and T2; T3
and T4 are mutual exclusive.

For the OS domain, we will for now ignore the priorities and possible priority inversions that can
occur from an incorrect mapping. Figure 2.4 contains two possible mappings of the example system
onto an OSEK API. The work of the real-time tasks is located in functions of the same name (e.g., task
T1 becomes the function T1()). On the left, we mapped each task into its own thread/OSEK task
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Figure 2.4 – Diffrerent Mapping of Real-Time Concepts onto RTOS Abstractions
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and implemented the directed dependencies with two evens that are signaled by T1 and T2. T3
waits in its task-entry function T3() until both events are signaled. The activation of the periodic
task is done with a timer-driven ISR with a period of 5. The sporadic task (T4) is activated by its
own ISR that is connected to the external event.

While the left mapping reflects the exact structure of the task model, it is not the most resource
efficient implementation. On the right side, we implemented the same RTCS with a smaller number
of RTOS objects. For example, we inlined T1 and T4 directly into their respective ISRs and combined
T2() and T3() into the T2T3 thread. Thereby, we fulfill the directed dependency between T2 and
T3 by the sequential execution in T2T3. For the T1–T3 dependency, the location of T1 in the Timer
ISR and the subsequent ActivateTask() ensure the correct ordering.

While such a compressed mapping can be beneficial for the resource consumption, it increases
the verification complexity that the model was correctly implemented. However, such compression
during the mapping process is common practice in industry. For example, the AUTOSAR [AUT13]
calls its (real-time) tasks runnables and a system generator maps multiple runnables into one RTOS
thread [YB10]. Thereby, ECU vendors are able to shrink the memory usage of the systems, as only
one RTOS thread data structure is required and the subsequently executed tasks will surely reuse
the same stack space.

By this compression, we loose the strict one-on-one mapping between RT tasks and OS threads
that the standard literature suggests [Liu00, cha. 1.1]. This combination of tasks also has influence
of the scheduling and, therefore, has to be done carefully. For example, if T4 has the lowest priority
in the system, a priority inversion arises from the execution of T4 in the ISR (right side). However, if
the execution time of T4 is shorter than the RTOS overhead for activation, dispatch, and termination,
the deliberate inversion has less impact on the real-time schedule than the canonical form.

Another difference between both mappings is the timing characteristic of the multiple-dependency
pattern of T3. In the direct mapping, the RTOS schedules T3 up to three times before the T3 thread
executes one job. When the ISR activates the thread, it starts and waits for the first event E1. When
E1 arrives, the T3 wakes up for a short period only to wait for the second event E2. If E2 also arrives,
the thread is scheduled a third time, executes T3(), the actual task, clears E1 and E2, and goes back
to sleep. In the compact mapping, the directed dependencies are implicitly encoded in the order of
job-function invocations.

It is noteworthy, that the distinction between real-time task and operating-system thread is a
common source of confusion between both domains. While the task is work that the RTCS must
somehow execute, a thread is an OS object, normally a co-routine, which the OS scheduler selects
at run time. A task is a static template for many transient, short-lived jobs, while a thread often
processes many work packages or messages, as it can also behave as a server for other threads. In
order to minimize the confusion, I will keep terms from both domains separate and I will avoid the
usage of “task” as some general duty or work, but I will use the word “chore” instead. If I want to
address the OS activity that is managed by the scheduler and is a technical entity, I will use “thread”.

This disassociation from OSEK tasks with the idea of real-time tasks, also becomes visible when
we look at a common usage pattern of the OSEK API. The looped-waiting pattern in Figure 2.5a is
another possibility to implement arbitrary patterns of multiple directed dependencies4. Here, we
implement the same dependencies for T3 as in Figure 2.4, but the thread T3 executes multiple T3
jobs. We mark T3 as AUTOSTART=TRUE in the OIL file and it processes T3 jobs in an endless loop. In
this example, which is a correct usage of the OSEK API, the thread T3 lost its notion of a real-time
task. It “degenerated” to an (eternally living) OS thread that only carries a task in its while–true
loop.

4Scheler [Sch11] describes even more patterns to implement multiple directed dependencies with the OSEK API.
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TASK(T3) {

while(1) {

WaitEvent(E1);

WaitEvent(E2);

// T3 job implementation

T3();

T

ClearEvent(E1|E2);

}

}

(a) OSEK Task to Thread Degeneration. The ac-
tual work of the T1 task is embedded into a loop
executes one step for every E1 or E2 event. How-
ever, the EventLoop OSEK task is no longer a task
by itself, but it becomes an eternally living thread
that carries a task.

unsigned int c = 0;

unsigned int freq; // 0..20

TASK(Coordinator) { // peridically activated

c++;

if ((c % 2) == 0) ActivateTask(T1);

if ((c % 3) == 0) ActivateTask(T2);

if ((c % (5 * freq)) == 0)

ActivateTask(T3);

TerminateTask(); }

(b) Emulation of Time-Triggered RTOS in OSEK. The developer of
this OSEK task misused the alarm capabilities of OSEK to emulate an
time-triggered with different operation modes via a helper thread.

Figure 2.5 – Non-Canonical Usages of the RTOS API

We have seen that the implementation engineer has multiple possibilities to map the same real-
time application onto the RTOS APIs. These different mappings have different characteristics when
it comes to resource consumption, but they also exhibit different timing characteristics. However, it
is not the real-time application in the RT domain that must exhibit a correct timing, but the actual
implementation on a concrete hardware. Therefore, it is essential to take a close look at application
behavior on the implementation level, which is closely tied to the RTOS–application interaction for
an event-triggered real-time system.

2.2.2 RTOS API Flexibility

Another aspect of the mapping process is the flexibility of the RTOS API and to what degree
it fosters and enforces explicitness. While the RT domain has a limited and well-defined set of
task dependencies and relationships, an OS interface is normally designed to support all kinds of
applications. For this, OS APIs often support a small set of basic operations that can be composed
into more complex operations. For example in Linux, the fork(2) system call and the dynamic
creation of threads are not supported separately, but the C library maps them both to the clone(2)

system call.
From the RT analysts point of view, it would be desirable that the RT-domain operations are

reflected one-to-one in the set of available OS operations. Thereby, the analyst could ensure that
her model covers the actual RTCS entirely and that the implementation does not manipulate the
scheduling in an unforeseen way. However, such a restriction is unrealistic as the RT model of the
system is exactly that: a model and, thereby, a problem specific simplification of the required solution.
When the model of the RTA comes into contact with the system environment, the hardware platform,
and the behavior of peripheral devices, the implementation engineer often requires a more flexible
and composable RTOS interface. We leave out these implementation necessities in the RT model on
purpose, but they will still end up in the deployed system.

For example, if we assume a task model without undirected dependencies (no mutual exclusion),
the implementation will often still require a mechanism to synchronize access to shared resources in
order to ensure a correct operation. These mutual-exclusive sections might not even stem from the
application code itself but from communication with the hardware or the usage of third-party libraries
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(i.e., logging). Therefore, the restriction to the exact set of RT-domain operations is unrealistic and
the RTOS API must remain flexible and composable. From this dichotomy between RT and OS
domain, different mapping issues can arise.

First of all, an flexible RTOS API that does only support basic composable operations leads
to different mappings for the same RT-domain operation. We have already seen this situation for
the implementation of multiple directed dependencies. As OSEK has no canonical support for the
arbitrary combination of wait conditions, different implementation patterns (Figure 2.5a, Figure 2.4,
[Sch11]) with different preemption characteristics can occur in the real-world code. However, even
if there would be the compound operation WaitMultiple(〈bool. exp.〉), legacy code could still
contain one of the composed patterns and developers could still use them.

The second issue, which is similar but distinct from the first one, is the “creative” use of the
RTOS API. As the RTOS interface has to stay flexible, the developer can use it to implement patterns
that are not covered by the RT task model. And while such constructs should not occur, they will, to
a certain degree, develop in real-world application code bases given enough time.

For example, in Figure 2.5b, we see such a creative usage of the RTOS API. Here, the RTOS
periodically activates the Coordinator thread, which increments a counter variable c and activates
other threads in regular intervals. Furthermore, the activation interval of thread T3 is not even
constant but can be adjusted at run time by modifying the variable freq. Even worse, the variable c

is globally visible and could be set by other parts of the system to every possible value, as the range of
possible values is only noted in a comment. This usage pattern suggests that the developer had more
or less a time-triggered system in mind but his manager instructed him to use an event-triggered
system.

We see that the RT model and the implementation will diverge to a certain degree, since the
implementation must not only adhere to the real-time requirements but must also solve other
engineering necessities. Therefore, the implementation level becomes the ground truth for the
correctness and timeliness and it is essential to take a close look at implemented interaction between
RTOS and application.

2.2.3 Impact of Implementation Side-Effects

The third aspect of the mapping from RT to OS domain that must be considered for RTSs, are the
side-effects of the implementation on the real hardware with an existing operating system. Even if
the OS implements the desired functionality correctly, the side-effects of multiplexing multiple jobs
onto the processor, which also executes the OS itself, impact the properties of the RTS.

Hardware issues like cache-induced preemption delays [LMW96; Mue00] and pipeline-induced
delays [HWH95; ZBN93; CP00] are an issue that influences the WCET. However, they are nor-
mally [CP01] considered on the task level where one job is analyzed in isolation and the effect of
the other system components is added pessimistically in the response-time analysis [JP86]. However,
as we have seen, our RTOS does not manage tasks and jobs, but threads that execute mapped tasks
and jobs. Therefore, only an analysis of the implementation yields a final certainty of the system
properties.

An example where this influence of the implementation was neglected for a long time is the
rate-monotonic priority inversion [LMN06]. This problem arises if the RTOS uses two priority spacesrate-

monotonic
priority
inversion

for ISRs and for threads, and if interrupts are serviced with a higher priority. In this scenario, a
thread with a high priority, which stems from a short periodicity in rate-monotonic scheduling, is
interrupted by an interrupt with a long minimal interarrival time. The ISR should actually have
a lower priority than the thread according to rate-monotonic scheduling, but the implementation
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violates the structure of priorities. There were several methods proposed to solve this problem by
changing the implementation and unifying the priority space [LMN06; HLS11].

Also in this third dimension, we see that it is not sufficient to look only at the RT domain to
make statements about a RTCS, but we must inspect the deployed implementation for side-effects.

2.2.4 Analysis on the Implementation Level

In the last three sections (Section 2.2.1–2.2.3), we have seen different problems that arise from the
transition between RT domain and OS domain:

• Ambiguous mapping of concepts and operations from RT domain onto RTOS services.

• Implementation necessities that requires an flexible RTOS API, which can be misused.

• Side-effects of the system software and hardware must be considered in the real-time domain.

From these observations, I draw multiple conclusions: First, I conclude that the implementation
of the RTCS as a whole is the only source of truth when it comes to making statements about
system properties. Second, we must analyze system properties on a more or less precise model
of the deployed RTCS; the closer our model is to the implementation the more precise are our
statements about the actual behavior. Third, the presence of deviations from the real-time model in
the implementation stems not only from bugs, but they are often born out of necessities and have to
be seriously.

In addition, the model-driven approach that I outlined in this chapter and that includes an
distinct mapping step from the RT to the OS domain does necessarily reflect the reality of software
development. Sometimes, the RT model is only used in the initial development phase and all
maintenance fixes are done on the implementation level such that the RTA continuously diverges
from the model. Some projects manually develop RT and OS model in parallel and keep them
manually in sync. And other real-time systems are developed in a bottom-up fashion purely on the
implementation level. However, for all these scenarios, the source code of the application is always
available, is always up-to-date, and is the fix point that covers all development models.

These observations led me to the approach of implementation-level interaction analysis of
the RTCS. I start out with the source code of the real-time application that is sprinkled with
system calls. These system calls are the “markup” language that the developer used to indicate
the desired interaction between RTOS and application. The investigated RTAs are result of the
RT–OS mapping process and already have assigned real-time properties, like thread priorities and
preemption thresholds. These attributes, as well as the application structure, are ought to be fixed,
and we are not allowed to adapt them in later optimization steps. My analyses combine RTA and real-
time parameters with the semantic of the RTOS to provide more realistic (and stricter) statements
about functional and non-functional properties. The presented approach is not a replacement for
the analysis on the RT domain, but acts as a post-mapping validation, analysis, and optimization of
the RT-domain results.

2.3 Chapter Summary

In this chapter, I gave an introduction to the concepts that real-time analysts use to model a real-time
application and presented mechanisms and abstraction that the RTOS developer provides at the
RTOS interface. I showed that there is a semantic gap between the RT domain and the OS domain
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2.3 Chapter Summary

that arises when we map the system onto an actual operating system. This thesis aims to close
into this gap as I introduce different post-mapping analyses and optimizations of the whole system.
Thereby, my implementation-centric approach to whole-system analysis is a good fit to answer my
research questions as it acknowledges the reality of threads, the RTOS, and the interaction between
both that the application code contains.
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3 Foundation – Fine-Grained Interaction Knowledge

After we have covered the abstractions of real-time computing systems and their mapping onto
OS primitives, we focus on the RTOS-mediated control-flow switch between threads. As we have
seen, the scheduling of threads is crucially important for real-time systems to perform actions on
time. Therefore, the structure and the properties of the schedule are under heavy investigation by
the real-time community. However, on the post-mapping level of the implementation, knowledge
about the interaction between RTOS and application holds the potential to better understand the
requirements of concrete applications.
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Figure 3.1 – Interaction between Threads and RTOS. For two threads, we see the call graph
visualized as a flame chart. Each thread executes along its own time axis (tA, tB) but interacts
with the RTOS via syscalls. In the example, thread A mandates the RTOS to activate thread B,
which schedules the latter one at some point on the physical-time axis.

First, we will take a closer look at the term “interaction” and its meaning in the interplay between interaction
RTOS and application. In general, the Merriam-Webster dictionary defines interaction as “mutual
or reciprocal action or influence”5. In our setting, we identify a single thread and the RTOS as the
subjects of the mutual influence as the RTOS mediates all communication efforts of the thread,
which can influence the scheduling. Thereby, it is an RTOS design decision to do this mediation
directly via explicit system calls, or indirectly by giving controlled access to shared memory and
peripheral devices. Thereby, the “action or influence” between thread and RTOS is indeed a mutual
one: while the thread hands work to the RTOS, the RTOS controls the execution of and the data
flow towards the thread. A good examples for this mutual influence is blocking file-system operation
read(): The thread mandates the input of data from the disk and gets blocked by the RTOS until
the data arrives in the memory.

For real-time computing systems, the control over the processor and the interleaved execution
of multiple threads is the most important aspect of the reciprocal influence as it is directly related
to the system’s timeliness. While the inter-thread scheduling for general-purpose systems is often
driven by nonfunctional properties like throughput or reactiveness, the schedule of a RTCS is closely
connected to the application’ structure and its requirements.

In Figure 3.1, we see several important aspects of the reciprocal influence in a RTCS with
two threads. For both threads, we see their inner structure in terms of their call graph as a flame
chart [Gre16]. The stacking indicates that a function calls a child function (e.g., bar() calls f())
and the horizontal extend indicates the execution time. Each thread executes on its own (virtual)
time axis (tA, tB), which does not progress if thread is currently preempted. It is noteworthy that
the worst-case execution time (WCET) is measured on this virtual time axis, while the worst-case
response time (WCRT) is measured on the physical time axis (tphysicial), which is managed by the
RTOS. In the figure, we see the situation where thread A mandates the RTOS to activate thread
B. As we have only one processor in the example, the RTOS schedules at some later point in time
thread B for execution and hands over the control about the processor to thread B, whose time axis

5https://www.merriam-webster.com/dictionary/interaction
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tB starts progressing. This transfer of the control between threads is the heart of my proposed global
control-flow graph (GCFG) abstraction, where we will build a system-wide control-flow graph that
contains edges between code blocks if they can execute directly in sequence on the physical time
axis.

Before going into more detail about the GCFG and how to compute it for a given system, I want
give an overview about other abstractions that are used to model the behavior of real-time threads
and their interaction with the RTOS. For this, I will start with related work that is close to the code
level and includes little system semantic and proceed to the more abstract models.

Bertran et al. [Ber+06] propose a global system view that includes the application code, libraries,
and parts of the operating system. By static analysis, they calculate a graph, which they also call
“global control-flow graph”, for an complex embedded system with Linux as operating system. They
connect system-call sites and library-call sites to their implementation in the kernel or in the libraries.
Thereby, they form a global view of the control flow of a single thread and get knowledge about the
code a thread executes or is executed on behalf of the thread in the kernel. As a result, they can
exclude dead system-call handlers and dead library calls that are never called by the application
from the system image. In their flow sensitive view, they handle the kernel as a higher-privilege–
level application extension and ignore scheduling, context switches, and the semantic of the kernel
execution.

Barthelmann [Bar02] uses static analysis of the application to calculate an interference graph,
which describes possible preemptions between a code block executed in a thread context and
another thread. Thereby, the calculation is done flow-insensitive and takes only the priority-driven
scheduling and SRP critical sections into account. With the extracted knowledge, the author proposes
an optimized inter-task register-allocation where the compiler minimizes the interference set between
preempted and preempting code blocks. Afterwards, different versions of the context switch that
save only parts of the register file are used to minimize the RAM overhead of saved thread contexts.
While the analysis is flow-insensitive and only little OS semantic is used, this paper is one of the
first attempts to take both, application and RTOS, in a generative whole-system optimization, into
account.

For interrupt-driven systems, [RRW05b] uses abstract interpretation of the machine code to
build an interrupt-preemption graph. While this analysis is precise and considers the control-flow of
each interrupt handler, the analyzed systems had no RTOS and the threads were independent in
their execution. However, the idea to follow the execution flow of the system along the physical
time axis is similar to my approach of extracting the interaction graph.

On a more abstract level, the model checking community has proposed to formally grasp the
application structure and combine it with the RTOS semantic in order to make statements about
different system properties. Waszniowski and Hanzálek [WH08] models the OSEK OS standard for
the UPPAAL model checker. For this, they used timed automata as the main abstraction for modeling
all system components in the system and they also took undirected and directed dependencies into
account. The combination of application and RTOS model were used to verify different application
properties, like the freedom from deadlocks and schedulability analysis of a gear-box controller. While
they captured application structure in a flow-sensitive timed automata, the model was manually
extracted from the application and enriched by the application semantic.

Similar, Tigori et al. [Tig+17] used extended finite automata of OSEK applications for model
checking. Besides checking of general safety properties, they also used the UPPAL model checker
to find and remove unreachable kernel code. However, they give no hint how to extract the finite
automata from the source code or how to ensure the equivalence of automata and source code.
Furthermore, in both model checking methods, the actual interaction between application and RTOS
is not calculated explicitly but is only implicitly calculated within the model checker. However, in the
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following chapters, I will present several methods that make beneficial use of an explicitly calculated
interaction model.

On the level of the RT domain, Bohlin et al. [Boh+08] calculates an preemption graph on
the granularity of whole tasks. They derive possible preemptions between tasks of a task set with
release offsets and fixed-priority scheduling. However, their tasks are independent from each other,
they ignore the application’s inner structure, and they neither consider passive waiting or external
interruptions. Similar to this, other preemption analyses on the granularity of whole tasks that do
not consider the application’s inner structure where proposed [DF04; Lee+01].

From the related work, we see that there are two important dimensions about interaction analysis:
the representation of the interaction as an interaction model and the method to fill this model with
data for a specific application. In this work, I will use control-flow–graph structures as interaction
model (similar to [Ber+06]) and, for some applications, derived finite-state machines (similar to
[WH08; Tig+17]). These graph structures get filled by static analysis and an abstract interpretation
of an application model on top of an abstract RTOS model (similar to [RRW05b]).

This doctoral thesis is an extension and direct continuation of the topics that I touched in my
Master’s thesis [�Die14]. There, I developed the foundational interaction analyses (SSE, SSF) and
proposed three applications of the results that improve the kernel’s run time and its resilience to
transient hardware errors. I presented these methods in a conference publication [�DHL15b] and in
a journal publication [�DHL17], which is an extended version of the conference paper.

As the resulting interaction models are the base for the interaction-aware analyses and opti-
mizations, I will recap them and their general operation briefly in the rest of this chapter. In the
following chapters, I will continue this research thread and investigate how we can further exploit
the resulting interaction models. For this, I extend the focus from the RTOS alone to the whole system
and consider important properties like timeliness, energy consumption, memory usage, correctness,
and hardware integration.

3.2 Static-Analysis Techniques for Real-Time Systems

For a source-code level analysis of the RTCS implementation, we need abstractions to grasp the
application logic on a higher abstraction level than individual instructions. As our interaction analysis
takes place before run time and works without executing the system, it is a static analysis. Therefore,
we can use abstractions from this domain and the closely related compiler and programming-
languages domain. Mainly, I will use the notion of the control-flow graph and atomic basic block
abstraction.

3.2.1 Control-Flow Graph

Motivated by the prospect of optimizing compilers, the concept of control-flow graphs (CFGs) was
introduced early in the area of compiler construction [All70]. These graphs capture the logic of a
function on the level of individual statements and allows us to use a multitude of graph algorithms for
program analysis. As the CFG connects basic blocks, we start out with definitions for both concepts:

Definition 1 (Basic Block) ([ASU86, p. 529]) A basic block is a sequence of consecutive statements
in which flow of control enters at the beginning and leaves at the end without halt or possibility of
branching except at the end.

Definition 2 (Control-Flow Graph) ([All70]) A control-flow graph (CFG) is a directed graph in
which the nodes represent basic blocks and the edges represent control flow-paths.
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Both definitions are rooted in the notion of flow of control and control-flow paths. The term
control flow stems from the control unit of the classical von-Neumann architecture [Von45], whichcontrol flow
controls which machine instruction should be executed next. So the control flow is the sequence of
instructions that the processor executes in directly after each other. Therefore, a control-flow path is
one possible control flow through a program.

In Figure 3.2a, we see a small example program that is grouped into basic blocks, which are
connected in a CFG. For simplicity reasons, I use the LLVM [LA04] immediate representation (IR),
which is not yet on the level of machine instructions but resembles them closely enough. We see that
the stream of instructions is already interrupted by labels (e.g., line 1 of 10), which are the targets
of branch statements. These labels are not present in the resulting program, but they will resolve to
the memory address of the following instruction, which can be used as a jump target. As the basic
block definition demands that the flow of control enters a basic block only at its first instruction, the
labels mark the beginning of a new basic block. Furthermore, basic blocks always end with a branch
instruction in the example even if they only jump to the following instruction. By this, LLVM can
reorder blocks without breaking the program logic.

In Figure 3.2b, the basic blocks of the example program are connected in a CFG. We see that the
start block becomes the entry block of the CFG and end is an exit block that leads to the termination
of the program. One control-flow path through this program is start, if.then, end, the other is
start, if.else, end.

While the definition of basic blocks and the CFGs is simple, it allows room for interpretation.
For basic blocks, we normally use the maximal basic blocks, which are the longest sequence of

1 start:
2 %1 = alloca i32
3 %2 = alloca i32
4 store i32 0, i32* %1
5 %3 = load i32, i32* %2
6 %4 = icmp eq i32 %3, 0
7 br i1 %4, label %if.then,
8 label %if.else
9

10 if.then:
11 %6 = load i32, i32* %2
12 %7 = add nsw i32 %6, 1
13 store i32 %7, i32* %2
14 br label %if.end
15

16 if.else:
17 %9 = load i32, i32* %2
18 %10 = add nsw i32 %9, 2
19 store i32 %10, i32* %2
20 br label %if.end
21

22 if.end:
23 %12 = load i32, i32* %2

(a) LLVM Immediate Representation

start:
%1 = alloca i32
%2 = alloca i32
store i32 0, i32* %1
%3 = load i32 , i32* %2
%4 = icmp eq i32 %3, 0
br i1 %4, label %if.then ,

label %if.else

if.then:
%6 = load i32 , i32* %2
%7 = add nsw i32 %6, 1
store i32 %7, i32* %2
br label %if.end

if.else:
%9 = load i32 , i32* %2
%10 = add nsw i32 %9, 2
store i32 %10, i32* %2
br label %if.end

if.end:
%12 = load i32 , i32* %2

(b) Control-Flow Graph

Figure 3.2 – Basic Blocks and Control-Flow Graph. An example program given in LLVM imme-
diate representation of a program with a single branch. The branch has an then and an else
statement.
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instructions that adheres to the basic-block definition. However, also smaller basic blocks, or even
minimal basic blocks, where every instruction becomes its own block, are possible.

48 83 ec 08 48 83 c4 08 c3

ret

75 ea 48 a2 c9 ff ff

call

48 8b 84 24 28 01 00Caller

Callee

Figure 3.3 – Instruction Stream

The other important dimension of CFGs is their scope or level. As we defined the control flow
by the stream of instructions, we must take a closer look at call instructions, which invoke other
functions. While the processor proceeds to the first instruction of the called function after the
instruction, the caller stops executing until the invoked procedure returns the control with the ret

instruction. Figure 3.3 illustrates the situation: The control flow of the calling function suspends,
while the instruction stream of the callee proceeds until the return instruction. From the perspective
of the calling function, the call is a special instruction that produces all side effects of the called
function.

Hence, we define two different CFGs for the program. The function-local CFG follows the dashed CFG, ICFG
line and describes only the control flow within a function. On the other side, the interprocedural
control-flow graph (ICFG), or thread-local CFG, follows call instructions and describes possible control-
flow paths of a thread trough different functions [SP81]. While the CFG contains only basic blocks
from one function, the ICFG connects all blocks the thread can execute in a directed graph. In
Section 3.4, I will define a third kind of CFGs that captures possible control flows across threads as
the result of my interaction analysis.

3.2.2 Atomic Basic Blocks

Coming back to the whole-system view of the implementation engineer, our static analysis will be
confronted with a large number of application basic blocks. For example, in Fiedler et al. [�Fie+18],
we used an GPS logging application on the base of an FreeRTOS system as an example. Disassembled
with radare26, the compiled binary contains around 20 000 instructions and 6429 basic blocks,
which are located in 2654 functions. However, not every basic block contains a system call and
thereby interacts with the RTOS. Therefore, we can improve on the efficiency of the subsequent
static analyses if virtually collapse regions into atomic basic blocks (ABBs).

From the RTOS’s point of view, it is insignificant how an application structures its inner loops as
long as they contain no system call. Actually, the RTOS does not even notice differences in this fine
structure as it is activated, and only runs, in the exception trough an interrupt or an explicit system
call. Therefore, we abstract from the application’s fine structure without loss of generality but with
improved analyses performance as we can concentrate on the relevant parts of the application logic.

For this coarsening, I will use an adapted ABB abstraction, which was introduced by Scheler
et.al [Sch11; SS11]. In a nutshell, an ABB is a group of basic blocks that either contains a single

6radare2 is a professional, free software disassembler tool used in reverse engineering and provides various binary
analyses, https://www.radare.org.
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system call or it contains only computational code that does not interact with the operating system.
Thereby, ABBs are constructed such that they can be connected in an CFG and resemble a coarsened
variant of the basic-block CFG.

Definition 3 Atomic Basic Block

1. An ABB is a single-entry–single-exit region of basic blocks that has a definitive entry block or exit
block, which might be equal.

2. ABBs can either be computational or invoke, directly or indirectly a single system call.

Due to the second part of the definition, ABBs execute atomically from the perspective of the
operating system. Leaving interruptions aside, a computation ABB, once started, will execute in a
run-to completion manner, before the OS can be activated in a subsequent ABB. Hence, they are
able to subsume large parts of the application logic that are irrelevant for the interaction with the
OS. Therefore, an ABB encloses at least one basic block.

For the ABB construction, and for my interaction analysis in general, I demand that the application
structure is static for the system-relevant parts of the application that interact with the RTOS. This
means that the application is not allowed to invoke system calls via function pointers. Only with this
assumption, the location of every system call is fixed and we can statically partition the application
code into system-call and computation blocks.

In Figure 3.4, we see examples for ABBs and their context. For the ABB in Figure 3.4a, the basic
block BB1 is the entry block and BB4 is the ABB’s exit block. For the operating system it is irrelevant,
whether the application takes the left or the right branch of the conditional. In Figure 3.4b, we see a
situation where a system call is enclosed by computation code. In the normal function-local CFG,
all three basic blocks would be merged into a single one, in order to get a maximal basic block.
However, due to our second part of the definition, we have to split the computation into three blocks
and enclose each of them into its own ABB. Similar to this, we also have to split a call to a function
that invokes a system call into its own ABB (see Figure 3.4c).

In order to transform an RTA into its ABB form, we have to perform several steps: (1) identifyABB
construction system-relevant functions that directly or indirectly invoke a system call. (2) split basic blocks at

system-call sites or at call sites to system-relevant functions. (3) form SESE regions that fulfill the
ABB definition.

For the first step, we perform an iterative fix-point analysis on the call graph. The call graph
is a directed graph, where each function becomes a node and an edge indicates a caller–callee
relationship between two functions. For the fix-point analysis, we start out by marking all functions
that invoke a system call directly as system relevant. Iteratively, we mark all functions that have an

BB1

BB2 BB3

BB4

ABB1

(a) Computation ABB

BB1

BB2

ActivateTask(T2);

BB3

ABB1

ABB2

ABB3

(b) Split at System Calls

BB1

BB2

foobar();

BB3

ABB1

ABB2

ABB3

void foobar () {
unsigned c = 100;
while (c > 100) {

ActivateTask(T1);
c--;

}
}

(c) Indirect System Call

Figure 3.4 – Atomic Basic Blocks. Atomic basic blocks subsume multiple basic blocks, form
a single-entry–single-exit (SESE) region, but they either contain computation or an direct or
indirect system call.
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edge to a system-relevant function as system relevant themselves and visit their predecessor nodes
again. We repeat this continuous updating of the system-relevant flag until no further changes occur.
As the update function is monotonous, we have to perform at most as many iterations as we have
nodes.

After we have split the basic blocks and isolated the system calls, we have to find SESE regions.
For this, we have several possibilities. Scheler [Sch11, p. 66] proposed an approach based on interval
analysis [Sha80]. In essence, the proposed method starts with a minimal ABBs, which enclose only a
single basic block. These initial ABBs are iteratively merged into larger ABBs until no further merging
is possible. For this, Scheler defines a set of known patterns that are SESE regions and identifies
them in the current ABB control-flow graph. Figure 3.4a is one example of such a pattern. If the
found SESE region adheres to the definition, it is merged into a single ABB.

The second variant to find ABBs is based on the dominance relation in control-flow graphs. dominance
relation

Definition 4 Dominance Relation ([Sha80]): In a control-flow graph, node x is said to dominate node
y in a directed graph if every path from start to y includes x. A node x is said to postdominate a node y
if every path from y to the end includes x.

To illustrate this definition, I give a few examples of dominance and postdominance: (1) The
entry block of a function dominates all other blocks of a function. (2) If there is only return block in
a function, this block postdominates all preceding blocks in the function. (3) A loop header block in
a while-loop dominates the whole loop body.

As Sharir [Sha80] states, it is necessary for a SESE region that the entry node dominates the exit
node and the exit node postdominates the entry node. This means that if the control-flow enters the
SESE region through the entry node, it must also exit it through the exit node. Furthermore, Sharir
gives a third, sufficient, condition that every cycle in the graph that includes the entry node also
must include the exit node. We need this third condition, as back edges that start after the SESE
region and jump into the region do not alter the dominance relationships.

From these three conditions, we can derive a similar ABB merge strategy as Scheler [Sch11] has
proposed: We wrap every basic block into an ABB and continuously merge ABBs until no further
merge is possible. We identify candidates by calculating the dominance set and the postdominance
set for each ABB (for example with [LT79; CHK01]). Then we identify candidate regions by iterating
over all nodes and check whether they are in the postdominance set of one of their dominated
nodes. We fulfill the third condition by checking for edges that enter the region from the outside. In
comparision to Scheler [Sch11], this method also works on improper and irreducible regions and
therefore achieves a condensed ABB graph.

The third option uses the program-structure tree [JPP94], which is a tree of SESE regions. Scheler
[Sch11] dismissed this algorithm as Johnson et.al have a slightly different definition of SESE region
where a region must be entered and left by one edge instead of a single entry/exit node. However,
we can circumvent this issue by replacing every node by two nodes a and b with a single edge a→ b
between them. All incoming edges to the original node are attached to a, all outgoing edges are
attached to b. This node expansion step was also described by Johnson, Pearson, and Pingali [JPP94]
in Figure 8, but not set into context. Figure 3.5 exemplifies the node expansion in the context of
finding ABBs.

As the performance of the ABB merge phase was sufficiently fast during all my experiments, I
implemented only the first and the second variant, leaving out the linear-time algorithm [JPP94].
However, as the second ABB formation strategy bases upon the dominance property the results are
equal.

With the ABB construction, I am able to express code of the real-time application as a set of
function-local CFGs that have ABBs as nodes. The control-flow edges between these ABBs express
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Figure 3.5 – Node Expansion for SESE Regions and ABB Merging

that a control-flow path between the exit basic block of the predecessor and the entry block of the
successor.

3.3 Static State Transition Graph

Based from the (coarsened) control-flow structure, I will describe two static analyses, a precise and
a fast one, to infer the potential RTOS–application interaction. The precise one uses an abstract
interpretation of the application structure, while the fast one is a fixpoint data-flow analysis.

Abstract interpretation [CC77] is a common technique for the static analysis of programs. For
this, we transfer the program and its code to an abstract universe, which covers only the parts of
the computation we are interested in. In this abstract universe, we execute an abstracted version of
program and record execution traces of possible program states. Thereby, the execution traces fork
on every decision that cannot be statically derived and we can record a state graph. Afterwards, we
can learn from the combination of the potential execution paths about the possible behavior of the
program.

In our scenario, we consider the whole system as the program-under-test and use the abstract
system state (AbSS) as the central data type to describe a potential program state. This AbSS is the
representation of the current state of the RTOS and the application in the abstract universe. As an
abstraction for the system structure, we use the function-local ABB graph and an abstract model of
an OSEK-OS RTOS, like it is specified by [OSE05]. The result of this abstract interpretation is the
static state-transition graph (SSTG), which combines all possible AbSS–AbSS transitions between
threads as they are mediated by the RTOS.

3.3.1 Abstract System State

Before we define the AbSS, I will present an example application and its function-local ABB graph
as it is the result of the ABB construction (see Section 3.2.2). In Figure 3.6, we see a system with
three threads with increasing priority. The low-priority thread activated by some external event (not
shown for simplicity) that indicates that new data is available. The thread reads the data into a
buffer and activates the high-priority thread if a newline was received. The high-priority thread
prints the buffer and terminates itself afterwards. The medium-priority thread is never activated (in
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Low (priority: 0) Med (priority: 1)

High (priority: 10)

val = readData();
if (val != '\n')A

B
B
1

buf.�nalize();

A
B
B
2

ActivateTask(High);
A
B
B
3

(empty)

A
B
B
4

buf.append(val);

A
B
B
5

TerminateTask();

A
B
B
6

action_c();

A
B
B
7

TerminateTask();

A
B
B
8

buf.print();

A
B
B
9

TerminateTask();

A
B
B
1
0

Figure 3.6 – Function-local ABB Control-Flow Graphs. Example system with three threads with
increasing priority. The low-priority thread activates the high-priority in a conditional branch.

this example) and is, therefore, dead code. We see that the ActivateTask() system call has split
the code of the conditional branch into two computation ABBs (ABB2, ABB4) and one system-call
block (ABB4).

For an abstract interpretation of an application in the context of an RTOS semantic (e.g., OSEK
fixed-priority scheduling), we define the AbSS dependent for the application under investigation.
For this, the AbSS has to hold the relevant information that influences the scheduling in the RTOS,
as well as the relevant part of the application context that is required to determine the next ABB that
is executed in the thread’s context. Figure 3.7 depicts one AbSS for the example system and we see
the division into parts that are relevant for the RTOS and parts that are relevant for the execution of
the application.

For the application state, we store the resume ABB for each thread, which indicates the next ABB
that would be executed by that thread if it is executed. In the example, thread Low would execute
ABB4 next while thread High would invoke a TerminateTask() system call. Furthermore, as we
use function-local ABB graphs, we need to record a (condensed) call stack to determine the next
ABB to execute if the current function returns. This call/return stack is also the reason, why we split
ABBs not only at system calls but also at function calls to system-relevant functions. All in all, the
application state is a condensed representation of the (saved) program counter and the execution
stack of the threads.

For the RTOS state, we have to store all information that can influence the scheduling decisions
and the interrupt relevant part of the hardware state. For each thread, we store its current thread
state, which indicates whether the thread is suspended (=terminated), ready to run, sleeping for an
event, or currently selected for execution. This state is set by the scheduler according to occurred
system calls and other parts of the thread state. For example, in OSEK we need to have a priority field
to store the current dynamic priority, which is influenced by the currently occupied SRP resources.
Furthermore, each thread has a bit mask that holds the currently signaled events and controls the
blocking behavior for WaitEvent() system calls. Besides the abstract version of the thread control
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Figure 3.7 – Abstract System State. The AbSS captures the state of the real-time computing
system at one point in time. Thereby, it considers the RTOS state as well as the callstack and the
resume ABB of the application threads. Adapted from [�DHL17].

block, we also use a boolean flag to indicate if interrupts are currently accepted. The global “next
ABB” field indicates the ABB block that the system will execute next and it is only a shortcut for the
resume ABB of the currently running thread.

Besides the normal threads, we also have to handle ISRs and OSEK alarms in the AbSS. AsIRQs
we have discussed in Section 2.1.2.1, interrupt handlers and threads are both activities that are
managed by the RTOS. Therefore, we model ISRs as pseudo threads and add another column for
each ISR in Figure 3.7. By this unified view on interrupt handlers, we are able to handle interrupt
semantics, like nested interrupts or interrupts with a lower priority than some thread, by lowering
the priority of the pseudo ISR thread. As alarms are normally driven by a timer interrupt, we model
all OSEK alarms with one artificial ISR, which activates threads that should be activated periodically.

For OSEK systems, the definition of the AbSS as a fixed-sized datatype is possible to a large
extend (if we neglect the call stack for now), as all system objects have to be declared in the OIL file.
For systems that can dynamically create threads, the AbSS has to reflect this dynamic. However, as
we will discuss, later, such dynamic systems are much harder to analyze by abstract interpretation
as the number of system states can easily become unbounded. Coming back to the AbSS data type,
we define it according to a specific system configuration, create accessors for the data fields, and
provide an operation to compare two AbSS instances.

As the AbSS holds the threads’ return stacks, we are able to carry out a flow-sensitive analysis of
the RTOS–application interaction. However, it is noteworthy that the AbSS does not contain any
timing information (there is no tA) as my interaction analysis is largely timing invariant.

3.3.2 System-State Enumeration

The second part of the abstract interpretation is the execution of the program in the abstract universe.
For the interaction analysis, the “program” is the combination of application logic (ABB graph), the
application parameters (OIL file), the kernel semantic, and an environment model that describes
when interrupts can occur. We encapsulate this combination in the system_semantic() function,
which produces a set of followup states for a given input AbSS:
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system_semantic :: AbSS −→ {AbSS}

The produced followup states are states that the whole system can potentially transition to
during or after the execution of the input state. Thereby, all followup states are equally likely and
possible from the analyses’ perspective.

We divide the system_semantic() function into two phases: (1) the execute() function applies
the semantic of the currently executed ABB and produces several followup states. (2) the schedule()
function updates the thread states and determines a new currently executed ABB by applying the
OSEK scheduling rules.

The execute() function captures the influence of the currently executed ABB, where different
ABB types have different impact on the AbSS: For system-call ABBs, we produce exactly one followup
state as OSEK has a deterministic system semantic that reflects the effect of the system call on the
AbSS. Thereby, these system-call influences reflect the specified behavior of the OSEK standard and
is not dependent one concrete kernel implementation.

Listing 3.1 WaitEvent in the Abstract Universe. The execute function produces one followup AbSS
for each system call. For WaitEvent(), we decide upon the system-call argument and the already
signaled events if the currently running thread gets blocked.

1 set<AbSS> execute(AbSS input) {
2 ....
3 // Extract information from the state and the syscall
4 Thread active = input.running_thread();
5 ABB abb = input.next_ABB();
6

7 if (abb.type == WaitEvent) {
8 EventMask wait_mask = abb.wait_mask;
9 EventMask set_mask = input.event_mask(active);

10

11 // In most parts, the return state is equal to the input state
12 AbSS ret = input.copy();
13

14 // If no event that we wait for is set, block.
15 // otherwise: continue to next ABB
16 if ((wait_mask & set_mask) != 0) {
17 // immediate return
18 ret.set_resume_ABB(active, abb.successor);
19 } else {
20 // block thread
21 ret.set_thread_state(active, BLOCKED);
22 }
23

24 // Produce only one followup state
25 return [ret];
26 }
27 ... // Other system calls, computation blocks, and function calls
28 }

Listing 3.1 depicts a part of the execute() function for the WaitEvent() system call to exemplify
the derivation of followup states. First, we extract information about the currently running thread
and the ABB that is active in this AbSS (next_ABB()). If the current ABB is a WaitEvent() system
call, we copy the input state as starting point for the newly generated AbSS. From the current ABB,
we extract the system-call argument wait_mask.
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HOLD: Assumptions: System-Call Arguments In order to be able to make this argument extraction
statically, I put another restriction on system calls, besides their fixed location (see Section 3.2.2).
My analysis requires that all system-call arguments that reference another RTOS object must be
statically derivable from the call site. Examples for such RTOS-object–referencing arguments in the
OSEK API are printed in SMALL CAPS in Table 2.3.

After we have extracted the wait_mask and the set of currently signaled events for the currently
running thread, we decide whether the thread must sleep or if the WaitEvent() system call returns
immediately. If at least one event in the wait_mask has already arrived, we set the resume ABB
of the current thread to the successor of the system-call ABB. Otherwise, we mark the thread as
blocked and keep the resume ABB pointing to the WaitEvent() ABB in order to reassess the wait
condition at a later point in time when another thread signals an event to the thread. At last, we
return a set with the prepared return state as the only followup state of the WaitEvent().

For non-system call blocks, the employed system semantic is more complex as the influence of
the application code itself must be captured. If the execute() function encounters a function-call
block, it pushes the successor ABB of the function call onto the ABB return stack and sets the resume
ABB of the currently executing thread to the entry ABB of the called function.

The most complex ABB influence stems from normal computation ABBs as they must capture the
function-local control flows, as well as the influence of IRQs. For each successor in the function-local
CFG, we produce a separate followup state and set the resume ABB of the current thread to the
successor ABB. For example, when executing ABB1 in Figure 3.6, we get two followup states for
each branch of the conditional with ABB2 and ABB5 as resume ABBs respectively.

Furthermore, computation ABBs are also the blocks where the effect of IRQs take place. For each
IRQ that can occur in a given computation ABB, we emit a followup state where the representative
pseudo thread for the connected ISR is set to runnable. Similarly, we handle the pseudo ISR handlers
for the OSEK alarm subsystem in the same way.

At first, this restriction of the IRQ occurrence to computation blocks looks as a restriction for
implementation flexibility of the kernel as being non-interruptible. However, if we interpret a system-
call ABB as the atomic point in time where the effect of the system call actually manifests, every IRQ
can be linked to the computation ABBs before and after the system-call block. Therefore, we ensure
constructively that each system call is surrounded by computation ABBs and insert empty ABBs if
necessary (see ABB4 in Figure 3.6).

After the execute() function emitted a set of followup states, we apply the schedule() function
on each state to reflect the scheduling semantic and to update the currently running thread. For this,
schedule() recalculates the dynamic priority of each thread to reflect SRP resource acquisitions,
determines if a reschedule to another thread is necessary, and updates thread states accordingly.

For the abstract interpretation, we start out by preparing an initial system state, which re-
flects the system directly after boot and, for example, set all threads to ready that are marked as
AUTOSTART=TRUE in the OIL file. Afterwards, we repeatedly execute the system_semantic() func-
tion on discovered states, beginning with the initial state, until we have discovered all possible system
states. In order to detect states that we have already discovered, we use the Comparable property of
AbSSs. As system-state enumeration (SSE) result, we construct the static state-transition graph (SSTG),
which is a directed graph where the nodes are AbSS and the edges reflect the followup-state relation.

In Figure 3.8, we see the SSTG for the example system from Figure 3.6. In the example, we start
with a state were High is suspended and Low is the currently running thread (red arrow). After
this initial state, which executes the conditional block of thread Low, the SSTG forks, where the
left branch directly executes ABB4 and the right branch activates thread High (ABB3). As thread
High has a higher priority than Low, it is directly executed after the ActivateTask(High). After the
TerminateTask() of thread High, both branches merge and the system proceeds to the stable state
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Figure 3.8 – Static State Transition Graph. The SSTG for Figure 3.6. AbSSs (blue) are simplified
to show only the thread state: the red arrow indicates the running thread, suspended/terminated
is strikethrough, otherwise the thread is preempted/ready. Furthermore, the resume ABBs are
shown for each thread, while the color intensity (green) disriminates between computation and
system-call ABBs. Blue edges indicate a SSTG transition.

where all threads are suspended as no interrupts are declared for this system. In later chapters, I
will show and discuss more complex SSTG examples that also also include interruptions.

3.3.3 The State-Space Explosion Problem

One general problem of abstract interpretation and, therefore, also for the SSE is the explosion of
the state space [Val98]. The problem is rooted in the potential number of possible states which is
potentially the cross product of the domains of all fields in the abstract program state. For our AbSSs,
alone the thread state field with its four possible values (suspended, ready, running, blocked) adds a
factor of 4#threads to the size of the potential state space.

However, there are several constraints that already restrict the set of valid AbSS. For example,
a state where all threads are activated and the lowest priority thread is marked as running is not
valid according to the OSEK semantic. Furthermore, the application logic itself also restricts the
state space, as some states are simply not reachable due to the function-local CFGs. In our example
system (Figure 3.8), it is impossible to be in a state where the thread High is running at ABB10

(TerminateTask()) and thread Low is ready at ABB1, although this would be a valid state according
to the OSEK semantic. However, the actually observed state space explosion for real OSEK systems
with the SSE analysis remains a problem.

As my experiments showed [�Die14], the biggest contributor to the actually reachable state
space are the interrupts as they can occur in every computation block and potentially fork the
SSTG for every interrupt source. Therefore, I will describe two different measures that eased the
IRQ-induced state-space–explosion problem.

3.3.3.1 Contraints from the Real-Time Domain

The first measure is a top-down approach where we incorporate more information about the
possibility of IRQ occurrences from the RT domain. In general, this strategy to state-space reduction
for abstract interpretation is called guided construction-time reduction[Val98, sec. 6]. As interrupts
are used to implement periodic and sporadic events, which have periods and minimum interarrival
times, the occurrence of interrupts will be restricted for the final real-time system. However, as the
SSE is deliberately time insensitive, we cannot use a quantitative statement about the minimum
time span between two interruption but we have to use more qualitative constraints.
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One example of such a qualitative statement is the period–equals–deadline assumption, which
states that the period of a task must be longer than its execution time in order to meet its deadline.
We use this fact from the RT domain to restrict the generation of an IRQ transition in the SSTG in
the execute() function for computation blocks. If such a constraint is available, execute() inspects
the AbSS whether an thread that implements the RT task is ready or currently running and emits an
IRQ transition only if all ABBs from that tasks have finished. Furthermore, we can also extend such
a constraint to a group of threads whose activation is dependent on an certain interrupt source.

In order to give a intuition on the SSTG sizes, I applied the SSE to an realistic example application
with 11 threads and 2 interrupts, which we discuss in more detail in Section 4.5.3 as i4Copter.
Without the IRQ constraint, the SSTG contains 1 563 169 states. If we utilize the knowledge from
the RT domain, the number of states drops to 20 063 [�DHL17]. As the interaction analysis itself
is only mean but not the focus of this thesis, I refer you to the discussion in that paper about the
additional impact of the incorporation of such a constraint.

Other possible incorporateable high-level facts are logic-of-action constraints. For example, if
an external interrupt signals the completion of an asynchronous chore that is carried out by the
hardware (like a sensor measurement), the completion can only be signalled after the chore has
been handed over to the hardware. Therefore, we could restrict interrupts to occur only after a
certain computation ABB has executed. However, I have not conducted experiments with such a
constraint and it remains as a problem of future research.

3.3.3.2 Simplification of the Application Model

The other possibility to reduce the potential size of the SSTG constructively is to reduce the total
number of computation ABBs in the application code as computation ABBs are the source of
interruptions. If we take a look at the example SSTG in Figure 3.8, we see that the initial state and
both successor states differ only in their computation ABB but not in the RTOS state as no system
call occurred. If we add one interrupt source (see Figure 3.9, we have to insert three interrupt edges
from these states to disjunct subgraphs, which eventually resume to the interrupted computation
block. Most of the time, the three subgraphs will be equal but the resume ABB of the preempted
thread Low.

For some applications of the interaction analysis, it is necessary to know where exactly a thread
was interrupt and to which ABB it resumes to. For example, there is a difference between the situation
where thread Low was interrupted in the left branch or in the right branch as it will invoke the
ActivateTask() system call only in the latter case. However, there are applications that do not
require this detailed knowledge. This possible trade-off between precision and the complexity of the
state space is considered one of the strengths of abstract interpretation [CH94].
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EE

Figure 3.9 – State Explosion for Computation ABBs. As interrupts occur by default in every
computation ABB, we get many regions interrupt-handling subgraphs in the SSTG that differ
only in their application AbSS state but not in the RTOS state.
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For applications with lesser demand for precision, we “coarsen” [Val98, sec. 7.1] the granularity
of computation ABBs and transform the CFG to a finite state machine that emits system calls on each
transition. These application state machine (ASM) produce the same sequences of system calls like
the original CFG, however the number of interruptible states is drastically reduced. The construction
of ASMs as an optimization to the SSE is a new contribution of this thesis and was presented in
Dietrich and Lohmann [�DL17].

As intuition, we collapse all computation ABBs between system-call blocks into a single application
state. For this, we greedily merge all computation blocks in a depth-first search starting from a
system-call block that are reachable without invoking another system call. The transitions between
the application states are then drawn and labeled according to the invoked system calls at the end of
the ABB region. An example for this compression of the application logic is shown in Figure 3.10 for
thread Low of the example system. Here, ABB1, ABB2, and ABB5 result in the L1 ASM state, which
is interruptible and is left by invoking a TerminateTask() or an ActivateTask() system call.

We consider the ASM as a generator that emits one system calls towards the RTOS on every
transition. If the example ASM is in state L2, it can only emit a TerminateTask() system call when
transitioning to the final ASM state L3. As the ASM generates the same sequences of system calls, it
is trace equivalent with respect to system calls to the original CFG.

For a more formal algorithm to form the ASM from the CFG, we execute three steps: (1) We
convert the CFG to its line graph, where each vertex becomes an edge and every edge becomes
a vertex, and use the ABB contents as labels. (2) We replace all computation ABB labels with ε
transitions such that only system calls are labels on edges. (3) We minimize the ASM by applying
standard ε-elimination in forward direction [HMU01, cha. 2.5.5]. The resulting ASM is equivalent
to the original CFG with respect to the system-call ordering, as all three steps keep the relative order
of the system calls intact.

With the converted ASMs, we execute the SSE but store ASM states on the ABB return stack, in
the resume ABB fields, and in the next ABB field During the SSE, when we execute the system_-

semantic() for an ASM state, we produce a followup state for every outgoing system-call edge and
iterate over all interrupts that can currently in this application state. Since the number of ASM states
is significantly smaller than the number of computation ABBs, we get a much smaller SSTG as a
result. In Chapter 7 in Figure 7.1, I show and use a more complete example for an ASM-derived
SSTG.
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Figure 3.10 – Compression for Application State Machines. By merging regions of ABBs that
are reachable in a depth-first search without invoking a system call, we create the compressed
trace-equivalent ASM.
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If we combine the IRQ constraint from the Section 3.3.3.1 and the ASM optimization and apply
it to i4Copter application, the number of SSTG states decreases even further from 20 063 states to
4834 states [�DL17].

3.4 Global Control Flow Graph

The SSTG draws a very detailed picture of interaction between the threads and the operating system
as its states are distinct if any field in the OS state differs. Due to this fine-grained distinction, the
SSTG has a high demarcation power about situations that look similar on the surface (e.g., ready list
is equal) but will behave different in the future (e.g., event is already signaled vs. it is still cleared).
However, not all users of an interaction model require this high degree of distinction but they would
only suffer from the large number of SSTG states. Therefore, I will discuss the global control-flow
graph (GCFG), which can be obtained by collapsing the SSTG based on the currently executed thread
and ABB, as a more coarse-grained interaction model.

The GCFG is a lifting of the CFG concept from the function-local and thread-local level to the
system level. In Section 3.2.1, we defined a control-flow graph as a directed graph of basic blocks
whose edges represent possible execution paths between the blocks. In order words, if there is a edge
between two blocks the last instruction of the predecessor block can immediately be followed by the
execution of the first instruction of the successor block. However, this notion of immediate execution
succession is always tied to a certain execution context. For the function-local CFG, instructions from
the same function body can follow each other. For a thread-local CFG, the whole thread becomes
the execution context and control flows between function bodies are possible as long as they do not
switch between threads.

Generalized to the system-level, the GCFG includes all possible control-flow transitions between
code blocks, even if they are executed by different threads. Thereby, the GCFG covers all possible
scheduling decisions of the RTOS as well as function- and thread-local control-flow decisions with
its edges. In Figure 3.11, we see an example GCFG for our running example (Figure 3.6). While the
control flow follows the application logic in the conditional (ABB1), the interaction with the RTOS
becomes visible when a system call is invoked (ABB3): Since the activated thread High has a higher
priority than the currently running thread Low, the scheduler will immediately dispatch to ABB9.
Therefore, the control-flow edge between ABB3 and ABB4 is not present in the GCFG (marked as
gray) as High must terminate (ABB10) before thread Low is resumed (ABB10 → ABB4).

Special consideration in the GCFG must be put on the processing of ISRs. While all GCFG edgesinterrupt
edges in Figure 3.11 are synchronous to the current execution flow (conditionals, synchronous system

calls), interrupts can occur after each executed machine instruction. A strict enforcement of the
possible-execution-path semantic would require that all GCFG blocks become minimal blocks, which
contain only a single instruction. This would diminish the usefulness of the GCFG as the number
of nodes and edges would drastically explode. Therefore, I use a relaxation for interrupt induced
GCFG edges that still captures the influence of IRQs but keeps the GCFG reasonably sized.

We draw only one interrupt edge for each interrupt source per ABB to the ISR’s entry ABB if an
IRQ can occur. This interruption edge indicates that the IRQ can occur at any given time during
the execution of the ABB. However, it does not indicate that some instructions are more likely to
be interrupted than others. We can do this relaxation as ABBs are either computational (do not
modify the OS state) or capture the influence of a system call on the OS state atomically. This relaxed
semantic also reflects the semantic of interrupts in the SSTG.

Another condensation of the GCFG can be achieved by cutting out the execution of ISRs from
the GCFG if the user of the interaction model is only interested in thread–thread and thread–OS
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Figure 3.11 – Example Global Control-Flow Graph. Global control-flow graph for the example
system from Figure 3.6
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Figure 3.12 – GCFG without ISR Regions. For some GCFG users only thread code is of interest
and we cut out IRQ regions. However, the interruption edge still can occur at any point in
comp1()

interaction. Figure 3.12 exemplifies this cutout of a ISR region from the GCFG. While the activation
of thread High is actually conveyed by the ISR, we can collapse the ISR code into one GCFG edge from
comp1() to comp2(). This cutout is only usefully if the RTOS executes ISRs in a non-preemptable
fashion as ISR activation and completion can be separated by thread blocks otherwise.

3.4.1 Code-Section–Based State Collapsing

For the calculation of the GCFG, we can derive the GCFG directly from the more fine-grained SSTG
by state merging. Therefore, we define an equality operator eq(a, b) that partitions the states of
the SSTG into equivalence classes which are collapsed into one GCFG node each. The simplest eq()
operator distinguishes two states iff they differ in their next ABB field.
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eqsimple(a, b) := (a.next_ABB())≡ (b.next_ABB())

With the equality operator, we partition the SSTG state space VSST G and create one GCFG node
Vi per partition pi . Thereby, the common next-ABB field becomes the referenced ABB block for
Vi . We draw edges (Vi , Vj) between nodes if at least one transition between two states from the
corresponding partitions exists.

P = par t i t ion(VSST G , eqsimple)

VGC FG = {Vi | pi ∈ P}
EGC FG = {(Vi , Vj) | Si ∈ pi , S j ∈ p j : ∃(Si , S j) ∈ ESST G}

With eqsimple, we get the smallest but least detailed graph that is a GCFG as it captures all possible
control flows between all code blocks. However, as every ABB occurs only once in the GCFG, also if it
is executed in the different thread contexts, this most simple GCFG form is rarely useful. Therefore,
it is often desirable to use a more specific equality operator that also takes the currently running
foreground thread into account:

eqstd(a, b) := (a.next_ABB(), a.running_thread())

≡ (b.next_ABB(), b.running_thread())

For this thesis, I will consider the GCFG produced by the eqstd equality operation as the standard
GCFG. However, other even more fine-grained equality operators that take more information from the
SSTG states into account are possible and might have useful applications. For example, an operator
that takes the dynamic priority of the currently running task into account produces an GCFG that
additionally distinguishes between ABBs with SRP-induced priority changes. It is important to note,
that multiple GCFG nodes can reference the same ABB if we choose another operator than eq_simple.

In Section 3.3.3.2, we could already choose between different SSTG “flavors” by using the CFGsfamily of
interaction-
models

or the ASMs as base for the SSE. Basically, there is not only one kind of SSTG but we encounter a
family of SSTGs. With the possibility to choose the equality operator for the state-collapsing GCFG
construction, we see that there is a multitude of different GCFGs for the same system. The cutout of
IRQ regions is another dimension to distinguish family members. In total, there is not only one SSTG
or one GCFG, but a whole family of interaction models that can be used in different usage scenarios.

3.4.2 System-State–Flow Analysis

The presented GCFG construction is based on the SSE analysis, which is potentially of exponential
run time. There, we use the result of the expensive SSE analysis and collapse states into a flow graph
and, thereby, loose information and precision. Therefore, a faster GCFG construction method that
directly produces the GCFG without the SSTG detour is desirable.

The system-state flow (SSF) analysis is such a method. It is a regular fix-point, data-flow analysis
that progressively uncovers GCFG nodes and edges. Thereby, the SSF trades in analysis time for
GCFG precision, as the resulting GCFG contains more edges than the state-collapsed GCFG. In the
end, the SSF will produce a GCFG with cutout IRQ regions on the base of thread-local CFGs.

For the SSF analysis, we have put some further restrictions on the thread-local CFGs, which can be
fulfilled by virtually duplicating ABBs and virtual inlining of functions in a graph preprocessing step.
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Each ABB must be unique or must be duplicated for each thread in the system such that the nodes of
the thread-local CFGs are disjoint. For example, if a system-relevant function is called by two threads,
we duplicate its ABBs. Furthermore, we must duplicate ABBs within each thread-local CFG such that
the dynamic priority, which is influenced by the OSEK resource protocol, is unambiguous. This means
that a ABB that is executed once with and without a taken resource becomes two different ABBs. In
combination, both restrictions result in a set of thread-local CFGs where the currently running thread
(abb.running_thread()) and the dynamic priority (abb.priority()) become static properties of
the respective ABB instead of dynamic properties of the system state.

In a nutshell, the SSF propagates imprecise system states on the already discovered GCFG edges imprecise
stateswhile it considers the thread-local CFGs in the handling of computation blocks. These imprecise

system states are the basic data structure of the SSF and they capture our often inconclusive
knowledge about the operating-system state at a certain point in the code. In essence, we introduce
[∗] values for fields of the AbSS (see Figure 3.7) to indicate our lack of precision. For example,
where the normalAbSS always makes a precise statement about the ready state of a thread, the
imprecise AbSS can also state that we do not know its state and it can be either ready or suspended.
Furthermore, the resume ABB of a thread becomes an set of ABBs that indicates that the thread
will continue in one of the given blocks when resumed. Only for the currently running thread, the
resume-ABB field, which is equal to the next-ABB field, has exactly one element.
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Figure 3.13 – Data-Flow of Imprecise AbSSs in the SSF Analysis. For a system with three threads
(H, M, L) with respective priorities, the imprecise AbSSs (blue) “flow” on the already discovered
GCFG edges into ABB3. Since the ready state of L differs in both incoming edges it becomes
unknown (∗) in the outgoing AbSS.

Before I describe the SSF more formally, Figure 3.13 shows an intermediate step of the SSF
analysis to give an intuition about imprecise AbSSs and their propagation along GCFG edges. The
considered system consists of three threads (H, M, L), while the figure shows only blocks from the
currently running (R) high-priority thread H. On each discovered GCFG edge, the SSF assigns one
AbSS that becomes progressively more imprecise as the fixpoint iteration continues. In the example,
the ready state of thread L differs in the incoming edges as ActivateTask() set the thread L to
ready (r) in the right branch. When the SSF processes an ABB, all incoming states are merged into a
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more imprecise AbSS, the influence of the ABB is applied, and the result is assigned to the outgoing
edge. In the example, the state of L is [∗] right before the execution of ABB3 and thread M becomes
ready (r) by the system call. The resulting AbSS will continue to flow on the GCFG edges and thread
L will remain [∗] until thread H and M finish their execution. In this situation, the SSF will insert
two GCFG edges, where one edge proceeds to the idle thread and the other jumps to the entry ABB
of thread L.

Require: initial_state :: AbSS // Initial system state after StartOS()
1: // System states are stored for blocks and for edges
2: edge_states = empty map of type ((ABB, ABB)→ AbSS)
3: working_stack = empty stack of type ABB
4: // Set up the working stack and fake the inputs for the initial block
5: initial_abb = initial_state.next_ABB()
6: working_stack.push(initial_abb)
7: edge_states[(initial_abb, initial_abb)] = initial_state
8: // Run the fixpoint iteration until the working stack is empty
9: while not isEmpty(working_stack) do

10: abb = working_stack.pop()
11: state_before = merge_states(edge_states[(*, abb)])
12: followup_states = system_semantic(state_before)
13: for next_state in followup_states do
14: next_abb = next_state.next_ABB()
15: if (abb, next_abb) 6∈ gcfg_edges then
16: new_gcfg_edge(abb→ next_abb)
17: end if
18: if next_state 6= edge_states[(abb, next_abb)] then
19: edge_states[(abb, next_abb)] = next_state
20: working_stack.push(next_abb)
21: end if
22: end for
23: end while

Algorithm 3.1 – The System-State Flow Analysis. The SSF is a data-flow analysis and adds the
GCFG edges used for the traversal of the graph during the fixpoint analysis.

The SSF analysis is a fixpoint data-flow analysis that can be described as a worklist algorithm
(see Algorithm 3.1). It calculates the GCFG from the initial system state and uses an auxiliary
datastructure (edge_states) to assign an imprecise AbSSs on each discovered GCFG edge.

In the initialization (line 5f), we push the initial ABB onto the working_stack and assign the
initial state as the incoming state flow for the first executed ABB. The analysis runs until the working
stack becomes empty and it processes one ABB from the stack in each iteration. For the examined
ABB, we merge all AbSSs from the incoming GCFG edges (line 11) and apply an adapted system_-

semantic() function on the result. As the followup states point to other currently running ABBs, we
add new GCFG edges if the followup ABB is not already present in the GCFG (line 16). Afterwards
(line 19), we update the AbSS on the outgoing edge and push the followup ABB onto the working
stack if the edge state has changed. During the algorithm, we gradually discover all GCFG edges,
the recorded AbSSs become more and more imprecise, and we terminate the SSF if no edge state
changes.
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Require: in_abss: imprecise AbSS to schedule upon
1: // Phase 1: Collect possible blocks
2: possible_blocks← empty list of type (ABB, boolean)
3: for thread in all_threads do
4: if in_abss.thread_state(thread) is [∗] then
5: for abb in in_abss.resume_ABBs(thread) do
6: possible_blocks←append (abb, false)
7: end for
8: else if in_abss.thread_state(thread) is (READY ∨ RUNNING) then
9: min_prio← min({abb.priority | abb ∈ in_abss.resume_ABBs(thread)})

10: for abb in in_abss.resume_ABBs(thread) do
11: // Only the block with the lowest dynamic priority is surely ready.
12: surely_ready← (abb.priority == min_prio)
13: possible_blocks←append (abb, surely_ready)
14: end for
15: end if
16: end for
17: // Phase 2: Sort blocks by priority; highest priority to the front.
18: possible_blocks← sort(possible_blocks, sort_by = abb.priority)
19: // Phase 3: Dispatch to each ABB until the first surely running block
20: return_abss← empty list of type AbSS
21: for (abb, surely_ready) in possible_blocks do
22: next_abss = in_abss.copy()
23: // Dispatch virtually to each possible ABB
24: next_abss.set_running_thread(abb.thread)
25: next_abss.set_resume_ABBs(abb.thread, {abb})
26: in_abss.remove_resume_ABBs(abb)
27: return_abss←append next_abss
28: if surely_ready then
29: return return_abss
30: end if
31: end for

Algorithm 3.2 – Scheduler for SSF analysis. The adapted schedule operation processes imprecise
system states and returns a list of followup states.

The lower precision of the SSF analysis but also its run-time benefits stem from the early merging
of system states during the GCFG discovery. While the SSE analysis first discovers all states precisely
and we collapsed them afterwards, the SSF performs the merge operation in each fixpoint iteration
without considering every state–state transition individually.

As already hinted, we need an adapted system_semantic() version that applies the semantic
on imprecise AbSSs. For this, we have to modify the execute() for system calls only slightly. For
example, ActivateTask() adds the entry ABB of the thread to the set of resume ABBs if the thread
is not already surely ready (i.e., [∗] or suspended). For the synchronous semantic of computation
blocks, we use the thread-local CFG successor instead of the function-local successor, whereby we
eliminate the need for the abstract call stack.

For the handling of asynchronous interrupt activations in computation blocks, the SSF takes a
partitioned approach: For each ISR activation, we spawn a separate SSF analysis with the AbSS of
the interrupted computation block as input state. The subordinate SSF analysis propagates the state
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on the ISR edges until an ISR exit block is reached and we return the system state at the ISR exit
block as the followup state of the interrupted computation ABB. Thereby, we automatically produce
a GCFG with cutout ISR regions. In the subordinate SSF spawning, we also check the interrupted
system state for the required constraints to trigger the ISR (see Section 3.3.3.1).

If the interaction-model user requires a GCFG with ISR regions, we reverse the cutout from
Figure 3.12 for the SSF result: During the subordinate SSF analyses we record all interruption points,
ISR-GCFG edges, and the resumption ABBs and replace the interruption edge by the GCFG of the
ISR body.

The SSF chooses this partitioned approach to avoid the problem of unnecessary imprecision due
to superfluous state-merge points in the GCFG. To illustrate this problem, let us assume that we
would execute the SSF in a non-partitioned fashion: As IRQs can occur in every computation block,
all computation blocks would have an GCFG edge to the ISR entry block. As we propagate the states
on already discovered GCFG edges, system states from the whole system would be merged at the
ISR entry block. Even worse, as most ISRs resume eventually to their interrupted block, the ISR exit
block would redistribute this totally imprecise AbSS to all computation blocks. Thereby, all state
precision would be lost and the SSF would become useless.

Besides the minor adaptions to the execute(), we mainly have to modify the schedule()

operation to handle imprecise system states correctly. Algorithm 3.2 gives the schedule operation
for a single imprecise AbSS in pseudo code. It emits several possible followup states and works in
three distinct phases:

First (line 1ff), we generate a list of possible candidate ABBs. For each ABB, we also store a
boolean flag that indicates if the thread that is statically associated with the ABB is surely ready or
not. For a [∗] thread, all resume ABBs are not surely ready (line 6). For a ready or the currently
running, only the blocks with the lowest dynamic priority are surely ready (line 12).

In the second phase (line 17f), we sort the list of possible followup ABBs according to their
dynamic priority (abb.priority). Like the static association with the currently running thread, we
know the dynamic priority statically due to the SSF requirements.

In the third phase (line 17ff), we start dispatching from the highest priority block downwards
and emit one followup AbSS for each virtual dispatch. We stop the dispatching at the first ABB that
is surely ready as all lower priority blocks could not be dispatched in the actual schedule. For an
emitted AbSS, the target thread is set to be surely running (line 24) and it has only the target ABB
as resume point, since it becomes the currently running thread. Furthermore, we to remove the ABB
from resume-ABB fields for all subsequently emitted AbSS as they were already considered in other
followup states (line 26). If remove_resume_points() eliminates the last resume ABB of a thread,
it is known to be surely suspended. Intuitively, if we produce a followup state that dispatches to a
low-priority thread, we know for sure that all higher-priority threads could not have been ready.
The schedule() operation returns with a list of possible followup AbSSs (return_abss).

The special case in phase 1 for ready and running threads solves a problem involving two threads:
For a surely running thread with a high and a low priority resume ABB and a [∗] thread with medium
priority, we get a list of three possible ABBs: [ABBH , ABBM , ABBL]. However, if we stop considering
blocks after we have encountered the first surely ready block (line 28), we may only mark the blocks
of the lowest priority as surely running for our scheduler:

[(ABBH , false), (ABBM , false), (ABBL , true)]

Thereby, we emit three followup states for each involved block, since it is not sure that the first
task will resume in the high-priority block.

As the exponential complexity of the SSE analysis was the starting point to develop the SSFSSF
complexity analysis, I will give a coarse assessment of the SSF complexity: In the SSF, we have at most ##ABBs2
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system states, one for each possible GCFG edge. Each system state has O (#threads) variables with a
fixed domain and #threads resume-ABB sets, each set having a maximum of #ABBs items. In each
monotonic analysis step, we change, in the worst case, at least one single fixed-domain variable to [∗]
or add a single ABB to a resume-ABB set. Therefore, we need at most O ((#ABBs·#threads)·#ABBs2)
iteration steps with polynomial complexity itself. In total, the SSF analysis is polynomial in the
number of threads and ABBs.

3.5 Limitations of the Interaction Analysis

In the last sections, I presented two methods to calculate a family of interaction models, which all
have some kind of control-flow semantic as, both, SSTG and GCFG edges constraint the possible
execution paths through the whole system. In this section, I will discuss the limitations of the
presented interaction analyses regarding the application and the system model of the analyzed
real-time systems. As SSE and SSF are both static analyses and derive their results from system’s
inherent determinism, these restrictions are all related to the allowed degree of dynamic behavior.

For the application logic, we put limitations on the flexibility of the used code constructs: First,
we forbid the invocation of system-relevant functions through function pointers (see Section 3.2.2)
in order to have a statically inferrable call graph from the thread’s entry function downward. This
restriction allows us to statically determine caller–callee relations and construct the thread-local
CFG.

However, we could lift this restriction by using an over-approximation of the call graph that
references multiple callable functions at indirect call sites. This problem of extracting a call graph in
the presence of function pointers is a well-studied static analysis problem [MRR04; Mur+98] that is
closely related to the problem of points-to analysis [Ste96; SH97]. Nevertheless, as this problem
also hinders other areas of static RT analysis (e.g., WCET analysis), some of the relevant standards
(e.g., [04; ISO11]) for safety-critical systems already discourage the usage of function pointers.

My second restriction on the application’s code structure forbids the usage of dynamically
calculated arguments for system calls if they reference a system object (see Section 3.3.2). By this
restriction, the influence on the AbSS of a system call becomes deterministic and the execute()

function emits only one followup state for every incoming precise system state.
We could loosen this restriction by allowing sets of possible values as system-call arguments

and by invoking the execute() for every possible argument assignment. In order to restrict the
set of possible values, we could apply value-range analysis [Har77] as another long-standing static
analysis technique. Nevertheless, similar to the function-pointer restriction, the degree of freedom
for system-call arguments is often already restricted by the RT domain. For example, for the SRP the
set of claimable resources must be fixed for each thread in order to calculate the ceiling priorities.
Therefore, also the system-call arguments for GetResource() and ReleaseResource() are limited
to these sets in the implementation.

The other class of restriction applies to the system and scheduling model. The presented analyses
only consider the fixed-priority on-line scheduling mechanisms, which are, for example, parame-
terized by a rate-monotonic scheduling strategy. Systems that offer significantly less determinism,
such as an RTOS with an EDF scheduler or any kind of scheduler that performs time-based online
acceptance tests, are much harder to grasp statically in their application–RTOS interaction. While a
fixed-priority scheduling decision only depends on the enumerable RTOS state, an EDF decision
depends on the progress of the physical time, which is an unbounded real-valued number. Thereby,
the interaction model would become the cross product of the application control flow and the
unbounded physical time axis. Nevertheless, for the domain of safety-critical embedded control
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systems, the focus on fixed-priority systems imposes little impact in practice as the relevant industry
standards (such as OSEK/AUTOSAR, ARINC 653, µITRON, but also POSIX.4) employ fixed-priority
scheduling.

3.6 dOSEK: A Framework for Whole-System Analysis

For the implementation of my approach, I extended the dOSEK analysis and generator framework
and integrated the presented interaction analyses. Originally, the dOSEK framework was developed
for the “dependable OSEK” project [�Hof+15], which was part of DanceOS (SPP1500). There, we
generated application-specific OSEK kernels that were several orders of magnitude more resilient
against memory bit flips. Here, I will give a short overview (see Figure 3.14) about the operation of
the generator framework, which we structured similar to a regular compiler.
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Figure 3.14 – dOSEK Generator Framework

Before we invoke the framework, the user compiles the application source with all dependent
libraries to LLVM IR immediate representation (IR) (step 0). Thereby, the dOSEK implementation
assumes that the source code is available. However, for the interaction analysis we only need the CFG
structure, the system-call locations, and their arguments, which could also be achieved by analyzing
the machine-code binary [The00].

In the first step, dOSEK splits the basic blocks (step 1) and finds ABB regions in the function-local
CFGs. The front end stores information about the application structure (i.e., functions, ABBs, and
basic blocks) in the system graph. This system-graph structure holds the static information aboutsystem graph
the currently processed application. Therefore, dOSEK enriches the system graph in step 3 with the
real-time properties and information about other system objects (i.e., SRP resources, alarms,. . .).

In the middle end, dOSEK combines the information from the system graph in the interaction
analysis (step 4), which I described in this chapter. As a result, we have the SSTG and the GCFG as
interaction models of different accuracy.

In the back end, the kernel generator replaces all system-call sites in the application code by calls
to placeholder functions (step 6). These place-holder functions are also generated by dOSEK as part
of the application-specific kernel implementation. For example, dOSEK replaces ActivateTask(T1)
system call with ActivateTask_BB3(T1) if the system call is located in the third basic block. By this
isolation of the system-call sites, dOSEK can generate a specialized system-call variant at every call
site. In the end, the generated kernel-source code and transformed application code are combined
and optimized by a final whole-system compilation step.
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While we started dOSEK to ease the run-time overheads of the bit-flip protection of the RTOS [�Hof+15],
it turned out to be a good substrate for whole-system analyses of static systems. With dOSEK, I
have the possibility to perform elaborated analyses on the whole system and influence the kernel
implementation, as well as the application code at the system-call sites.

3.7 Chapter Summary

In this chapter, I described the ABB abstraction as an optimization for whole-system analysis of
the RTCS. Based on the coarsened CFG structure the foundational SSE/SSF interaction analyses
capture the possible application–RTOS interactions in a family of interaction models. The system-state
enumeration (SSE) analysis enumerates all possible system states and produces the exponentially-
large static state-transition graph (SSTG), which can be collapsed into a global control-flow graph
(GCFG) by different state-equality operators. In contrast, the system-state flow (SSF) analysis directly
calculates an less precise GCFG in polynomial time via a fixpoint data-flow analysis that progressively
uncovers the GCFG by propagating imprecise system states on the already discovered GCFG edges.
Overall, both analyses are parametrizable with additional constraints from the RT domain and
can produce GCFGs of differing abstraction levels. The SSTG and the GCFG capture the RTCS on
the implementation and post-mapping level and unveil the interaction in a control-flow sensitive
manner.
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4
SysWCET

Whole-System Response Time Analysis

The worst-case response time (WCRT) – the distance between job release and completion on the
physical time axis – is one of the most crucial properties of a real-time computing system (RTCS).
For a safe upper bound, we must not only consider the mere computation requirements of the task
implementation, but also all other influencing system factors, like interruptions and kernel overheads.
While the regularly used WCRT methods analyze the task pessimistically in isolation and add the
system overheads in retrospect, my proposed SysWCET approach exploits the whole-system view of
the SSTG interaction model for an integrated analysis. Thereby, SysWCET does not only include
all relevant system components, but its integrated nature also allows us to consider inter-thread
dependencies in the execution-path analysis.

While the core idea of SysWCET was developed to give upper bounds for response-time spans, the
principle proved also to be applicable to assess the worst-case response energy (WCRE) consumption
in the presence of switchable peripheral devices with varying power consumption.



4 SysWCET – Whole-System Response Time Analysis
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4.1 Compositional WCRT analysis considered harmful

The WCRT analysis of individual real-time tasks is closely related to the timing or scheduling analysis
of a whole RTCS. For a hard real-time system, a successful scheduling test states that all jobs finish
on time between their release and the respective completion deadline. For example, the scheduling
analysis for a uniprocessor EDF system decides upon the processor utilization of a given task set
whether the execution is feasible or not [LL73]. Many scheduling tests have a binary result for a
given task set: it is either schedulable with the given resources or not. However, often it is useful to
know how early before its deadline a job will finish to give lower bounds for the slack time of the
response. For this, the WCRT is a quantitative upper bound for the response time of an individual
task if it is executed by a given system configuration.

For most WCRT analysis methods, the problem is divided into two subproblems [JP86]: First, we
calculate an upper bound for the execution time (= the WCET Ci) of the task as if it would run in
isolation on the given hardware. For the WCET analysis, the task’s code structure and the underlying
machine are considered and the execution time for the longest path through the implementation is
calculated. Afterwards, the individual WCETs are accumulated according to the given scheduling
model and other real-time system parameters, like the period of each task. Thereby, the accumulation
formula reflects the preemption and interruption situation for the critical instant, which denotes the
worst chain of events that is possible during the execution of the task.

In order to exemplify this, I will explain a simple but representative WCRT analysis [JP86]
for a simple sporadic and preemptable task under a fixed-priority system model. The tasks are
independent and each task τi has a minimum interarrival time Ii , a given WCET Ci , and a fixed
priority. Without loss of generality, I assume that a lower task index i indicates a higher priority
and τ0 has the highest priority in the system. Clearly, for this task τ0 the response time RT0 equals
its WCET C0 as no other task is scheduled during its execution. For a low-priority task, the critical
instant occurs when all higher-priority tasks occur as often as possible during the processing of the
low-priority task. Therefore, we can give an iterative formula that converges to RTi:

RTi = Ci +

 

j<(i−1)
∑

j=0

dRT ∗i /I je · C j

!

In each iteration, the response time is the sum of the task’s own execution time Ci and the time
that is spent in the execution of higher-priority tasks. For the latter part, we calculate the maximal
number of occurrences for each higher-priority task τ j from the previous response time RT ∗i and the
minimum interarrival time I j of the preempting task. For each possible preemption, we account for
one full execution time C j .

For more complex system models, the WCRT formula is extended by additional additive terms
to account for other system interferences. For example, for systems with shared resource access, we
have to add a blocking term that accounts for the worst-case delay that is induced by the resource
acquisition [LZM04]. Other important terms are RTOS overheads like context switches and time
that is spent in the interrupt handling. However, the general structure of WCRT analysis methods
remains compositional as the accumulated delays are considered to be constant and independent of
each other.

However, these compositional WCRT methods all share a common problem of accumulating
pessimism, which leads to overly conservative upper bounds for the response time of individual
tasks. The more pessimistic an WCRT estimate becomes, the more distant is the actual WCRT of the
task from the estimate, which forces the RTCS developers to over provision the hardware to meet
the theoretical provable requirements. I already presented a simple instance of this problem in the
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(a) All interruptions and task preemptions are possible.
WCRT: 300+ 103+ 200+ 4 · 25= 703
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(b) Thread activation occurs only in right branch.
WCRT: 300+ 13+ 200+ 25 · 2+ 14 · 2= 591
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(c) Interruption and activation are mutual exclusive.
WCRT: 300+ 103+ 0+ 21 · 2= 445
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(d) ISR execution always exits early.
WCRT: 0+ 13+ 200+ 14 · 2= 241

Figure 4.1 – Control-Flow Sensitive Response Times. We can lower the upper bound for the
response time if different control-flow sensitive constraints on the actual interaction are known.
Here, we see a system that consists of two threads and one ISR in four different degrees of used
interaction knowledge for the WCRT analysis. Each block contains its timing cost, the RTOS
requires 25 time units in the worst case, and the edges in the respective WCRT case is indicated
in red. Adapted from [�Die+17].

introduction (Chapter 1). For illustration purposes, Figure 4.1 shows an extended version thereof
that highlights different situations that are, due to their control-flow sensitivity, problematic for the
compositional approach. For the flow-sensitive WCRT considerations, we switch from the RT domain
(task) to the OS domain (threads) as we are interested in the WCRT of the actual implementation.
HOLD: Eigenener Absatz für task -> thread?

All four situations in Figure 4.1 show the same RTCS with different degrees of knowledge about
the RTOS–application interaction. The system consists of two threads and one ISR: the low-priority
thread has a conditional statement where the branches have a large difference in their execution
time. In one branch, the low-priority thread activates he high-priority thread by a synchronous
system call. An interrupt can occur at one location in thread Low and the activated ISR has two
different interrupt-return points; one after 50 cycles and the other after 300 cycles. The overheads
of the RTOS are 25 cycles in the worst case for each activation. Furthermore, we are interested
in the WCRT of thread Low, and we assume that thread High and the ISR can occur at most once
during the execution of thread Low.

Figure 4.1a shows the knowledge that is considered by the compositional WCRT method and
I highlighted those CFG edges that are visited in the longest execution path. Since we calculated
the WCET of Low (103) and High (200) in isolation, we had to assume the worst-case execution
path for both threads and the late return point in ISR (300). For the RTOS overheads, we use the
usual pessimistic approach [Lv+09b] and add the longest path through the kernel for every context
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switch [Bla+11]. Therefore, we account for four full kernel activations (25), two for the synchronous
preemption and resumption, and two for the ISR dispatch and return. Overall, a compositional
approach for the example system would end up with a WCRT estimate of 703 cycles.

The first improvement (Figure 4.1b) of the estimate shows if we consider information form a
GCFG with cutout ISR regions. As this GCFG includes all thread–thread preemptions, we see that
the activation of thread High is located in the faster branch of thread Low. Due to this flow-sensitive
directed dependency between both threads, their WCETs are no longer independent as CHigh adds
nothing to the response time if CLow reaches is maximum in the left branch. Another aspect in the
activation block is the more precise information about the kernel run time for the thread activation.
In Figure 4.1a, we accounted the maximal WCET of the kernel for each activation. However, since
we now exactly know the exact operations that is performed in both kernel activations (preemption
and resumption), we can give a much lower bound (14) for both transitions, leaving us with an
overall WCRT of 591 cycles.

We can improve even more on the analysis, if we consider more information about the possible
occurrences of the ISR (Figure 4.1c). For this example, we use the knowledge that the ISR can only
trigger in the long-running block (100) of the left Low branch due to a logic-of-action constraint.
With this knowledge base, which reflects the standard GCFG, the flow-sensitive WCRT analysis will
now consider the left branch as the more expensive situation since the ISR outweighs the cost of
thread High. Again, as we know the interruption point for the ISR more precisely, we can give a
tighter estimate on the RTOS overheads. So, if we consider flow-sensitive thread dependencies and
flow-sensitive interrupt constraints, we can tighten the WCRT even further to 445 cycles.

Besides system-level constraints that influence the occurrence and scheduling of activities, an
application can also have logic constraints on its control flow. For example, if we would know
that the ISR will always take the early exit path in the examined situation (Figure 4.1c), the ISR
WCET becomes 50 cycles. Thereby, the left branch of Low is no longer the longest execution path as
thread dependencies, interrupt constraints, and control-flow constraints interfere with each other.
Compared with our initial compositional WCRT estimate of 703 cycles, we end up with an overall
WCRT of 241 cycles.

Overall, the compositional WCRT method, which works bottom-up and adds up thread-local
WCET estimates according to the RTCS configuration, is easy to implement but afflicted with overly
pessimistic estimations. These over estimations increase with rising degree of constrained component
interaction as this fine-grained knowledge cannot be considered in the composition. The root problem
of the compositional WCRT method is the segregated consideration of threads in the preceding
WCET analysis, where thread boundaries also act as boundaries for the exploitation of flow-sensitive
constraints. In a nutshell, the WCET analysis reaches its limits at the application–RTOS boundary.

4.2 Related Work

Before I describe SysWCET as an integrated method to tackle the problem of overly pessimistic
WCRT estimates, I want to give an overview about regular WCET and WCRT analysis techniques, as
well as methods that already consider more fine-grained information about the system.

The goal of WCET analysis is to estimate the upper bound for the longest execution time among
all paths through a given program. For all downstream RT analyses to be sound, the actual WCET
must always stay below this upper bound. In the literature, many techniques, which are based
on measurements on the actual hardware or which rely on static code analysis, were proposed.
In this section, I will concentrate on the three important classes of static-analysis methods for
WCET estimation: the structure-based methods, the path-based methods, and the implicit path-
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enumeration technique (IPET). For a more exhaustive discussion of WCET techniques, which includes
processor-behavior, control-flow, and value analysis, please refer to Wilhelm et al. [Wil+08].

Structure-based WCET techniques, like the timing schema [Sha89], work on the hierarchic
structure of the program’s abstract syntax tree (AST). In a preceding machine-analysis step, every leaf
node, which are statements that contain no statements themselves, is assigned a basic timing cost. In
a bottom-up traversal, the costs are propagated to the root node according to combination rules for
this statement type. One prominent tool that is based on the program structure is HEPTANE [CP00;
CB02]. Control-flow sensitivity can be partially achieved by using flow contexts, which require virtual
AST modifications like loop unrolling and function inlining. However, more complex control-flow
constraints, which are also called flow facts, like mutual exclusive paths, cannot be expressed. In their
methodology, this class is similar to the compositional approach to WCRT analysis as execution-time
costs are propagated from the bottom up.

The second class of bound-calculation methods are the path-based ones, which enumerate a
large amount of paths through the program explicitly. Thereby, a very precise hardware modeling
can be done as the exact instruction sequence in the path is known, which works especially well
for straight-line code [SA00], which contains no branches. For more complex control-flow graphs,
the exponential blow up of explicitly enumerating all paths becomes infeasible. However, Stappert,
Ermedahl, and Engblom [SEE01] proposes a hybrid approach that partitions the control flow into
smaller independent scopes, which are analyzed in a path-based manner. Besides being beneficial for
the hardware analysis, path-based methods are inherently able to incorporate complex control-flow
constraints as they process paths explicitly.

The third class of bound calculation are implicit as they do not explicitly enumerate all paths but
encode the longest-path search on top of another problem formulation. For the IPET [PS97; LM95],
which is the prominent implicit method, we encode the CFG as an integer linear programming (ILP)
optimization problem with. While the IPET is also able to incorporate complex path constraints and
flow facts, its implicity allows it to handle larger systems than the path-based methods, As IPET is
the base for SysWCET, I will explain its operation principles in more details in Section 4.3.

While WCET analysis is already complex for regular programs, its application to operating-system
code is even more challenging as the OS often contains irregular control flows (e.g., interrupts,
context switches) and a mix of a high-level language and assembler [Lv+09b]. For example, this
problem struck Colin and Puaut [CP01] in the analysis of the RTEMS operating system with the
structure-based HEPTANE tool. Later work, mostly relied on the IPET and, for example, Lv et al.
[Lv+09a] presented an IPET-based WCET analysis of the µC/OS-II RTOS and gave an upper bound
for each synchronously invoked system call.

An important issue for the analysis of RTOS code, is the longest interrupt-blockade time as it
determines the interrupt-detection latency of the whole operating system. Along these lines, Carlsson
et al. [Car+02] and Sandell et al. [San+04] analyzed the kernel of the system calls of the commercial
OSE operating system and gave upper bound bounds on the disable-interrupt regions.

Similar, Blackham et al. [Bla+11] extended the guarantees of the functionally verified seL4 [Kle+09]
microkernel to the timing domain and provided bounds for the longest uninterruptible kernel path.
While the original seL4 kernel disabled interrupts for its whole run time to ease the verification
process, Blackham introduced explicit preemption points with a bounded interrupt-detection latency
in between. Later on, Blackham, Liffiton, and Heiser [BLH14] improved on the seL4 analysis by
systematically removing infeasible paths by additional IPET constraints.

As already mentioned, the compositional WCRT is executed after the WCET bound estimation
and uses the resulting WCETs Ci . The first WCRT analysis of a fixed-priority system was presented by
Harter Jr [Har87] and already entailed the compositional nature of later analyses. The cumulative
analysis, like I presented it in Section 4.1, was developed in parallel in [JP86] and [Aud+91; Aud+93].
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Later, these WCRT analyses were extended for other task models, like tasks with offset [Aud93],
with release jitter [TBW94], or preemption thresholds [KBL10].

Also, different OS services that block the progress of a task due to synchronization and event
signaling were considered. For these delays, we calculate and add a blocking term to the WCRT
formula. This can be done for OS-mediated synchronization protocols, like the priority-inheritance
protocol [SRL90a] or the SRP [Bak91], and for inter-core synchronization primitives, like spin-
locks [WB13]. For self-suspending, or blocking, tasks it was recently discovered [Nel18] that many
previous methods for calculating a maximal waiting time were flawed and had to be fixed.

Besides all the mentioned extensions, most WCRT analyses remained compositional in nature. A
different direction was taken by researchers from the model-checking community that formalized
the behavior of OSEK systems. Waszniowski and Hanzálek [WH08] considered a system with non-
preemptive tasks and ISRs that influence the RTOS state. They used timed automata to represent
tasks, which are similar to application-state machines (see Section 3.3.3.2) besides that they are
labeled with execution-time demands. These timed automata were combined with a model of the
OSEK semantic in the UPPAAL model checker. For each task, they progressively reduced an initial
WCRT estimate until the model checker cannot prove the property “maximal model time < WCRT”
anymore. As UPPAAL is a model checker that explicitly searches in the state space, the WCRT analysis
is similar to a path-based WCET analysis on the system level.

From the related work, we see that the WCET analysis moved from structure-based methods,
over path-based approaches, to the IPET in order to include complex path refinements Blackham,
Liffiton, and Heiser [BLH14], which tightened the execution-time bounds for individual tasks. When
we take a look at the WCRT methods, we see that they are largely, besides the model-checking
approach, rely on the compositional approach, which is similar to structure-based WCET analysis
and, therefore, cannot easily include complex flow constraints, Therefore, I propose SysWCET: an
implicit take on WCRT analysis that relies on the IPET and the SSTG interaction model.

4.3 Implicit Path Enumeration Technique

As SysWCET uses the IPET to encode the WCRT problem as an ILP, I will explain this basic WCET-
analysis technique in this section in more detail. Furthermore, in Chapter 6, I will apply the IPET
again to calculate the worst-case stack consumption (WCSC) on a shared stack.

The IPET was first proposed by Li and Malik [LM95] and later extended to more complex control
flows by Puschner and Schedl [PS97]. It tackles the problem of WCET analysis from the same
direction as path-based methods as it searches for the execution time of the longest path on the CFG
through the program. Thereby, each basic block and possibly every edge have assigned execution
costs, which we accumulate for the longest path to get the WCET. Unlike the path-based methods,
the IPET captures the worst-case paths only implicitly by the execution frequency/count of the CFG
blocks.

Unlike the shortest-path problem for a general directed weighted graph (with non-negative edge
weights), which is solvable in polynomial time [Dij59], the longest-path problem is, unfortunately,
a NP-hard problem [UU04]. However, the problem is only NP-hard for graphs with loops as the
longest-path problem for directed acyclic graphs (DAGs) is reducible onto the shortest-path problem
for DAGs, which can be solved in linear time [KW59]. Unluckily, most programs contain loops and,
therefore, finding the longest execution path is in general NP-hard. Therefore, the IPET stays in
the same complexity class if it reduces the longest-path problem onto another NP-hard problem for
which efficient solvers exists: integer linear programming

Integer linear programming is a mathematical optimization problem where we have to choose a integer linear
programming
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vector of integers x ∈ Zn such that a weighted sum becomes maximal, where the weight vector c
consists of constant integers:

maximize
|x |
∑

i=0

ci · x i

Furthermore, for a solution to be valid, it must also fulfill a set of linear constraints. Each
constraint is a less-equal inequality with a constant integer b on one side and another weighted sum
(weights: a) on the other side:

subject to
|x |
∑

i=0

ai · x i ≤ b

While this canonical form is restricted to simple less-equal inequalities, standard transformations
allow us to express more complex constraints, such as equalities. With these constraints, we can even
encode and embed boolean formulas over x into our ILP that must be fulfilled for the solution to be
valid (reduction of SAT onto ILP). It is this flexibility of ILPs that enables the IPET to encode the
longest-path search on CFGs together with complex flow facts in the same ILP-problem formulation.

The key idea of the IPET is to create a count variable, which the solver can choose, for eachexecution
counts basic block and for every edge. These variables count how often the respective element is visited

during the longest path and the WCET becomes the weighted sum of the count variables and the
element execution times, which have to be supplied by a preceding machine analysis. Furthermore,
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Structural Constraints:

a = BB1 = b
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a = 1= h
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Objective Function:

maximize 10 · BB1 + 5 · BB2 + 12 · BB3+
7 · BB4 + 9 · BB5

(b) ILP

Figure 4.2 – IPET Example. With the IPET, we can encode the structure of the CFG as control-
flow constraints, as well as loop-bound and entry constraints. The objective function becomes
the WCET for its maximal valid assignment.
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we encode the CFG structure as a set of structural constraints that ensure that each basic block is left
over an outgoing edge as often as it activated by an incoming edge.

In Figure 4.2, we see an example CFG and its ILP representation, with one variable per basic
block (BB1) and per edge (b) as it is constructed by the IPET. For the control-flow constraints, we
sum up the variables of the incoming edges (e.g., b+ g) and assert it as equal to the basic-block
count (e.g., BB2) and the sum of the outgoing edges (e.g., c + d). Additionally, we insert an artificial
entry (a) and exit (h) edge, which are visited exactly once, for the counts to become balanced.

On this basic control-flow structure, we can add additional control-flow constraints. For example, flow facts
for every loop, we have to constraint the number of loop executions (6 iterations, N = 5) as the ILP
becomes unbounded otherwise. For this, we add a constraint that the sum of all back edges (g) is at
most N times larger than the sum of all loop-entering edges (b). With these constraints in place, our
example ILP has a maximal objective value of 166. For this WCET, the entry node (BB1) is visited
once, the loop header and footer (BB2, BB5) are visited six times, and, in all six loop iterations,
the left branch is taken (BB3) as it executes for longer than the right branch. It is noteworthy that
solving the ILP does not give us the longest path but only the execution counts on the longest path;
hence it is an implicit WCET method.

With this basic ILP formulation, we can add further path refinements and add more complex
flow constraints to our ILP. For example, if we know that the loop takes the branches within the loop
in an alternating fashion, we use a set of constraints to encode this knowledge: (1st row) a helper
variable X becomes one iff the branch is visited an uneven amount of times; the variable E captures
the number of branch decisions that both branches have to take. (2nd row) The uneven “excess”
branch is distributed between both branches with the help of two additional helper variables:

E · 2= BB2 − X E, X c , Xd ∈ [0,∞[ X ∈ [0, 1]

X = X c + Xd c = E + X c d = E + Xd

With these additional constraints, the solver can choose the left branch only three times and must
take the less-costly right branch also three times. Therefore, this additional flow fact tightens our
WCET estimate to 151. In general, we must transform such a path refinement such that it becomes
a constraint on the execution counts, which might not be possible in all cases as execution counts
have no information about execution order. For a detailed discussion about more complex flow
constraints and their encoding as ILP constraints, please refer to Ermedahl [Erm03].

4.4 Response-Time IPET Construction

With SysWCET, I propose a response-time analysis that is based on the IPET and the SSTG interaction
model. Into one ILP formulation, SysWCET integrates the lower-level WCET analysis, the code
of all threads and the control transfer between threads. By this tight integration, we can express
inter-thread flow facts and benefit from control-flow–sensitive information, which is normally only
available on the WCET level, in the WCRT analysis. In this section, I will first give a short overview
about the layered SysWCET IPET construction, before I describe each layer in more detail.

WCRT(RTCS,τi) =WCET
�

RTCS
�

threadτi

��

The key idea of SysWCET is that the WCRT of a task is the WCET of the whole RTCS while it
executes and completes the task-implementing thread. From a more code-oriented point of view,
the WCRT analysis of a task must answer the question: how long does it take at maximum from the
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Figure 4.3 – SysWCET IPET Layers

first instruction of the triggered ISR until the last instruction of the activated thread. One possibility
to calculate a bound for this duration is to find the longest system-level execution path/instruction
sequence. This approach is similar to (implicit and explicit) path-based WCET analyses methods on
the thread-level .

This longest system-level path must be included in the SSTG, since this interaction model includes
all possible system-level execution paths. Therefore, our WCRT problem is equivalent to find the
longest path (∼= the longest execution time) in a SSTG subgraph that starts with the ISR entry block
and ends with the thread’s TerminateTask() system call. For the ILP formulation, SysWCET uses a
layered construction (see Figure 4.3): (1) in the state layer, we interpret the SSTG subgraph as a
control-flow graph, encode it with the IPET as an ILP, and expose execution-count variables that
capture how often the system visits that state. (2) in the glue layer, we derive an ABB execution
count from the state counts, since the system can enter and leave a state several times before the
linked ABB is completed once. (3) in the machine layer, we encode all ABBs in the system and all
referenced non-system-relevant functions with the IPET as ILP fragments and connect them to the
ABB count. On the resulting integrated ILP, we add additional system- and thread-level flow facts.

4.4.1 The SSTG Subgraph of the WCRT Problem

For the normal WCRT analysis, we are confronted with a RTCS and a task, and have to answer
how long it takes, at maximum, between job release and job completion. However, as I discussed in
Section 2.2, the actual existing RTCS does not execute tasks but threads and ISRs that implement,
in their entirety, the task set. Therefore, we have to tie the release and completion of jobs to points
in the system execution. For my implementation, I chose source-code annotations in the form of
pseudo function calls, which the developer must supply and which indicate the start and the end of
the considered execution paths.

In Figure 4.4, we see our running example with source-code annotations, where a high-priority
thread is activated from a low-priority thread. The user is interested in the WCRT of thread High
and puts the start annotation (timing_start()) right before the activating system call while the
end annotation (timing_end()) is located right after the last task statement. There are two benefits
of using function calls for the annotation: (1) we can eradicate these function calls during the
system generation to avoid influence on the final system. (2) we can use these function calls for
measurement-based response time analysis of the task of interest. During the system-analysis step,
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1 TASK(Low) {
2 if (...) {
3 →timing_start();
4 ActivateTask(High)
5 } else { ... }
6 }

7 TASK(High) {
8 ...
9 →timing_end();

10 TerminateTask();
11 }

Figure 4.4 – Example System with Response-Time Annotations

we identify the static source-code locations of the annotations and map them to their corresponding
ABB such that we end up with two sets of ABBs ABBstar t and ABBend .

The decision for using sets of ABBs instead of determining a single start/end ABB is a conscious
one. As we have discussed earlier Section 2.2.1, the mapping from the RT domain to the OS domain
is not unambiguous and, therefore, we can end up with several possible release points for a task
implementation. Similar, the mapping can duplicate the task code at two points in the system such
that we end up with multiple completion points. As a side effect of this required flexibility, we gain
the possibility to determine upper execution-time bounds between arbitrary locations in the system,
which do not have to be aligned with task implementations. For example, we can enclose a task
implementation like in Figure 4.4 but put an additional completion point in an ISR that cancels the
task execution.

From ABBstar t and ABBend , we will derive corresponding sets of states (Sstar t , Send) from the
SSTG state set S and identify the subgraph (Ssub) between these sets.

Sstar t = {s | s ∈ S, s.next_ABB() ∈ ABBstar t}
Send = {s | s ∈ S, s.next_ABB() ∈ ABBend}

Ssub = {s | ss
T∗
−→ s

T∗
−→ se, states(T )∩ Send =∅

s ∈ S, ss ∈ Sstar t , se ∈ Send , }

For the start and end set, we select those states that currently execute one of the ABB blocks from
the corresponding ABB set. It is noteworthy, that the next_ABB field is unambiguous for the whole
family of interaction models that I described in Chapter 3. Therefore, SSTG and standard GCFG, but
also flow graphs with an intermediate precision (due to a different state-equality operator), can be
used as an input graph for SysWCET. However, for this thesis, I will concentrate on the full SSTG as
the input graph for the SysWCET analysis.

We select the subgraph Ssub between both sets with a depth-first search beginning from the start
set. We include all states (and transitions) on the paths between a start and an end state that do not
visit an end state in between. While the annotation-based subgraph selection is very accessible for
the developer, we also can use other filters and constraints to generate SSTG subgraphs that reflects
other WCRT problems. For example, it is often useful to exclude the execution of the start block
from the problem but only include states that are direct followup states.

As result of the SSTG preprocessing step, we end up with a SSTG subgraph that reflects out
WCRT problem. The subgraph can have multiple entry states, multiple exit states, and it can consist
of several disconnected components.

4.4.2 The State Layer: Constraining State Counts

The first layer of the SysWCET IPET construction is the state layer. It introduces one count variable
for each state and each transition in the given SSTG subgraph, which we will denote by S for the
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IPET construction. As nomenclature, I will use ‖〈object〉‖ for count variables, which are positive
integer-typed ILP variables, of arbitrary objects, since we will encounter ILP variables of different
purpose and ranges later on.

∀s∈S

 

∑

t∈{∗→s}

‖t‖= ‖s‖=
∑

t∈{s→∗}

‖t‖

!

Like for the WCET variant, we introduce structural constraints on the state layer to encode the
control-flow structure of the SSTG. The sum of the count of the incoming transitions, the count of the
state itself, and the sum of all outgoing transitions must be equal. However, we have to pay special
attention at the start/end states, since we have multiple entries and exits. Therefore, we insert
artificial dangling start (→ ss) and end (se →) transitions for the count flow to become balanced.
Furthermore, we have to assert that exactly one start transition and exactly one end transition can
be taken.

∑

ss∈Sstar t

‖ → ss‖= 1
∑

se∈Send

‖se → ‖= 1

To illustrate the SysWCET construction, I will extend the example from Figure 3.6 with an ISR
that activates the medium-priority thread and that can only be triggered at two locations in the
system. Figure 4.5a shows, in a condensed form that is similar to ASMs, the extended example
system. For the WCRT analysis of thread Low, we will use the SSTG subgraph in Figure 4.5b as
input and encode it as an ILP. Furthermore, we categorize the state transitions into three classes:
(1) thread-local transitions (Tlocal) invoke no thread switch and follow the thread-local CFG. (2)
thread-dispatch edges (Tdispatch) represent thread switches that are synchronously invoked (e.g., with
a system call). (3) IRQ-activation edges (Tirq)are the transitions that are the forced activation of an
ISR by the processor’s interrupt circuitry.

Coming back to the IPET construction, we would add the following structural constraints for the
state sA, which executes ABB1, to our ILP:

‖a‖+ ‖h‖= ‖sA‖= ‖x‖+ ‖b‖+ ‖ f ‖ ‖a‖= 1
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While it looks superficial to introduce ‖a‖ as variable that is constrained to be constant, I chose
this explicit and verbose formulation to improve readability. For the ILP solving time, this redundancy
is no impediment as solvers normally preprocesses the problem [CPL16, cha. 13], before any attempt
is made to find an optimal solution.

The SSTG (Figure 4.5b) exhibits another issue that we have to tackle on the state layer that is
not present in this form for WCET IPETs: state loops. As RTCS run potentially forever, the system
will revisit previously visited states on a regular basis. For example, the edges (x→g→h) and (y→p)
are loops in the SSTG, which are provoked by interrupt activations. Unlike loops in regular WCET
problems, an explicit loop bound can often not be given for a state loop. For example, the upper
bound for an IRQ–iret loop must be derived from the WCRT and the minimal interarrival time and
coordinated with all other interrupt edges of the same source. However, for the structural constraints
to become complete, we use an artificial upper bound M , which must be definitely larger than the
actual loop bound. We express this structural constraints by stating that no back edge can be taken
if the loop-entry count is zero:

∑

t∈back edges

‖t‖ ≤
∑

t∈loop entries

M · ‖t‖

With these structural constraints, the solver will only produce state-count vectors that are derived
from valid paths trough the SSTG. However, we still lack proper constraints that limit the number of
state-loop iterations. A problem that I will discuss in Section 4.4.5.

4.4.3 The Glue Layer: Deriving ABB counts

The state layer results in state-count variables, which indicate how often the system will visit a
specific state in the worst-case scenario. However, the ABB that is linked with a state is not necessarily
executed as often as the state is visited. For example, if ABB1 in Figure 4.5b is interrupted three
times (‖x‖ = 3) during its execution, we enter the corresponding state 4 times (‖a‖ = 1,‖h‖ = 3) as
we resume three times to this block after thread Med has completed. However, ABB1 is executed and
completed exactly one and not four times. In general, we want to derive the actual ABB-execution
counts from the state counts to get a tighter estimate on the WCRT bound.

The naïve approach to the ABB-count problem would be to subtract the outgoing IRQ-edge
counts from the state count to derive the ABB count. For example, for the IRQ–iret loop in Figure 4.6a,
we would end up with the following constraints for ‖ABB1‖:

‖sA‖= ‖a‖+ ‖r‖ ‖ABB1‖= ‖sA‖ − ‖x‖

While this approach looks promising on the first sight, it is fatally flawed as it would underestimate
the WCRT in some cases. It is only sound in situations where the interrupt eventually resumes to the
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Figure 4.6 – Problems with naïve ABB-Count Derivation
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interrupted state. However, as we have to allow arbitrary SSTG subgraphs, we also have to handle
interrupts that never resume but reach a completion point beforehand. In Figure 4.6b, we see a
distilled version of this problem. If we apply the naïve approach, we end up with the following two
constraints:

‖ABB1‖= ‖a‖ − ‖x‖ ‖ABB2‖= ‖x‖

If the solver takes the interrupt edge (‖x‖ = 1), state sA is correctly visited once but the ABB
count for ABB1 becomes zero, since we subtract one state visit for the interruption. In this case, the
solver would only account for one execution of ABB2 but not for the execution of ABB1, although
the interrupt could occur right after the last instruction of ABB1. Thereby, the naïve approach leads
to underestimation of the WCRT.

Another possible, but flawed, approach to this problem would be to subtract the IRQ resume
edges for the ABB count. Again, for situations with a full IRQ–iret loop, this will lead to a correct
derivation of the ABB count from the state count. However, another flawed situation occurs if we
encounter a state graph where only the iret but not the IRQ edge is present (see Figure 4.6c). Here,
the modified naïve approach would lead to an unfulfillable constraint, as state counts cannot be
smaller than zero:

‖ABB1‖= 0− ‖r‖

From these corner cases, we see that we are only allowed to subtract full IRQ–iret loops from the
state count to tighten up the ABB counts. However, we cannot even detect such full loops statically
in all cases from the structure of the SSTG, since combinations of Figure 4.6a+(b), where Si is also a
stop state, can occur. In such a combination, the solver decides dynamically whether the ISR resumes
(to sA) or if the WCRT path ends before (in si). For such cases, where we cannot statically guarantee
that interrupts and resumptions balance out, we can derive the ABB count without provoking a
WCRT underestimation by the combination of static analysis of the SSTG and some additional ILP
constraints.

For the generalized ABB-count derivation, we let the ILP solver calculate the number of fully
completed IRQ–iret loops and subtract it from the state count. We analyze each ABB ABBa in isolation
and find all states Sa in the subgraph that execute it. For these states, we identify all interrupt (Ta,i)
and resume transitions (Ta,r) that start, respectively end, in a state from Sa. While the interrupt set
is easy to derive from the transition classification, we only include transitions that are reachable in a
depth-first search from an interrupt transition:

Sa = {s | s ∈ S, s.next_ABB() = a}
Ta,i = {t | t ∈ Tirq, t.from ∈ Sa}

Ta,r = {t | t ∈ Tdispatch, t.to ∈ Sa, t i ∈ Ta,i , t i
T∗
−→ t }

The sum of all count variables in Ta,i is the total count of interruptions in ABBa; the sum of Ta,r

is the total count of resumptions. Depending on the scenario (Figure 4.6a-(c)), their delta becomes
either zero or indicates “overhanging” interruptions or resumptions in this block. With the help
of a special-order set (SOS), we can calculate the number of “incomplete” interruptions that never
resume. Special-order sets are a feature that most ILP solvers provide to ease the formulation of
ILP problems. However, they are just an optimization and can also be implemented with regular
ILP constraints. An SOS of class N is a set of ILP variables that constraints that only N variables in
the set can be larger than zero; all other variables must be zero. For this ILP construction, we need
additional helper ILP variables, which I will denote with Hi .
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SOS1 : Ha,i > 0 Ù Ha,r > 0

−1 ·Ha,i +Ha,r =
∑

t r∈Ta,r

‖t r‖ −
∑

t i∈Ta,i

‖t i‖

HABBa
=
∑

sa∈Sa

‖sa‖ −
∑

i∈Ta,i

‖t i‖+Ha,i

First, we define an SOS of class 1 such that either Ha,i (overhang interruptions) or Ha,r (overhang
resumptions) can be greater than zero. Afterwards, we calculate the delta between interruptions
and resumptions and let, depending on the sign of the result, either Ha,i or Ha,r absorb the absolute
value. For the ABB count, we accumulate the state counts, subtract all interruptions, and re-add all
incomplete interruptions. To illustrate this approach, let us have a look at the ABB-count derivation of
ABB4 from Figure 4.5b. It is noteworthy, that we could, in this case, statically derive that interruptions
and resumptions will balance out and avoid the SOS construction.

−H4,i +H4,r =

resumes
︷ ︸︸ ︷

(‖p‖+ ‖k‖)−

IRQs
︷ ︸︸ ︷

(‖z‖+ ‖y‖)

‖ABB4‖= (‖sZ‖+ ‖sZ2‖)
︸ ︷︷ ︸

state count

− (‖z‖+ ‖y‖)
︸ ︷︷ ︸

IRQs

+ H4,i
︸︷︷︸

unresumed IRQs

It is important to emphasize that the IRQ–iret detection works on the granularity of ABBs and
not states. Therefore, an interruption on edge z and a resume on edge k balance out, although we
never resume to the interrupted state sZ but to the state sZ2, which also executes the interrupted
ABB4.

4.4.4 The Machine Layer: Integrating the Application and Kernel Code

In the glue layer, we have derived ABB counts that indicate how often each ABB is executed in the
WCRT scenario. However, we have to derive a worst-case execution time for each ABB, which itself is
a single-entry–single-exit region of basic blocks. For this, we formulate the ABB’s WCET calculation
as an ILP with the IPET, which I already discussed in Section 4.3, and integrate it as a subproblem
to the SysWCET ILP.

For the formulation of these WCET-ILP fragments, we start by collecting all ABBs that are
referenced from any state in our SSTG subgraph. Furthermore, we also have to account for all
non–system-relevant functions that are called from the ABB structure but are not directly covered by
their basic blocks. While these non–system-relevant functions do not guide the execution paths of the
system, they contribute large parts of the execution time as they include much of the application’s
computation and the used libraries.

As both ABBs and functions have a unique entry block, the execution count of the ILP fragment,
which is generated by the IPET, can be controlled through one basic-block count variable ‖BBa,entry‖
(resp. ‖BBf,entry‖). Unlike the simplistic WCET problem (Section 4.3), we do not constraint these
entry variables to one, but connect them via constraints to other parts of the ILP. For ABBs, we
constraint the ABB count ‖ABBa‖ and its respective entry count ‖a, ent r y‖ to be equal, which links
the machine-layer ILP to the glue-layer ILP.

For functions, we bound their activation count by the sum of all basic-block counts that contain
call sites to the function, like it was also already proposed in the initial proposition of the IPET [LM95].
In order to handle function pointers correctly, this approach requires helper variables Hb→ f for each
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function that can be called form a basic block b. Thereby, the call-site count is distributed among all
possible call targets:

‖b‖=
∑

f ∈cal l_tar gets(b)

Hb→ f ‖ f , ent r y‖=
∑

b∈cal lsi tes( f )

Hb→ f

Besides the structural constraints, we also add loop constraints into the integrated ILP, like we
would do it for a regular WCET problem. Thereby, we have to pay special attention for loops in the
ABB CFG as there loop-entry edges and back edges are between ABBs, not between basic blocks; the
edge-count variables are simply not present. However, we bypass this problem by using the sums of
the corresponding state–state transitions from the state layer.

One side effect of our machine-layer construction is that it already includes the kernel code askernel code
non-computational ABBs invoke system calls. Due to our restrictions on the static CFG structure,
we know for every system-call exactly which system call is invoked and connect it to the actual
system-call implementation. For example, ABB2 in Figure 4.5 is a system-call ABB and it references
the ActivateTask() execution path through the kernel. Thereby, we account for every system-call
site exactly with the execution cost for the specific system call instead of adding the maximal kernel
execution time. In Section 4.4.5, I will take a closer look at additional constraints that I had to
introduce to handle the dOSEK kernel code correctly.

As the last step of our ILP construction, we have to assign timing costs to all elements of the
combined ILP problem, like basic blocks and interrupt edges. In general, we assign a constant cost
to each count variable in the ILP and formulate the objective function as the weighted sum of count
variables and timing costs.

For the machine-code basic blocks, I rely on the normal machine-code analysis that produces
a worst-case timing for a given instruction sequence. In the simplest case of the basic processor
model [Roc14], each machine instruction is counted as a single cycle without inter-instruction effects
or caches. In Section 4.5.4, I will discuss the incorporation of more complex hardware analyses into
the SysWCET approach.

However, at this point I want to point out one specific hardware-induced delay that is closelyIRQ delays
related to the structure of the SSTG. On most platforms, interrupt handling induces a (varying)
timing penalty if the ISR interrupts the execution at some point within an ABB. These costs can, for
example, stem from a forced pipeline flush or communication with the interrupt controller. As an IRQ
edge in the SSTG does not specify the exact location of the interruption, I require the machine-code
analysis to calculate an ABB-specific worst-case interruption delay for any code location that is
covered by the ABB. We account for this interruption delay by adding it as an additional cost to all
interrupt transitions that originate from the ABB. For example, if an interruption in our example
system Figure 4.5 takes 5/7 cycles for the ABBs ABB1/ABB4, we add the term 5 ·‖x‖+7 ·‖z‖+7 ·‖y‖
to our objective function.

If our system contains no IRQs, we can already give the ILP problem to a solver, like CPLEX [CPL16]
or gurobi [Gur19], and we will receive a WCRT for our SSTG subgraph. The solver will assign,
in compliance with the ILP constraints, the count variables those values that maximize the WCRT.
Thereby, the solver will find the costliest path through the SSTG, calculate maximal ABB counts,
and find the longest execution path through each ABB and all referenced functions.

However, despite our initial goal of fully integrating WCET and WCRT analysis, I want to point
out that the SysWCET problem formulation is also capable of a more compositional WCRT analysis
that still inherits most of the flow-sensitive properties. For this, we analyze the WCET of each ABB in
the system individually, skip the machine-layer generation, and assign the ABB execution cost to the
ABB-count variables. Thereby, we still have the possibility to formulate inter-thread constraints on
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the granularity of the ABB structure but loose the ability to tie together machine-code basic blocks
from different ABBs by constraints.

4.4.5 System- and Thread-Level Flow-Fact Constraints

While we already have added loop bounds as one type of flow facts on the machine layer, we can
introduce, now that the ILP structure and all variables are in place, more complex constraints to
tighten the WCRT bounds. These ILP constraints can put count variables from all three layers in
relation to each other.

FIXME: Aus dOSEK Einleitung hierher verschoben. However, it is possible that the compiler back end mapping
problemchanges the IR-level CFG structure while generating machine code. For example, if the processor

supports predicated instructions, the back end can inline small conditional blocks into their prede-
cessor blocks [Mah+92]. If such optimizations become an issue, we can use control-flow relation
graphs [HPP13] to identify the relation between IR basic blocks and machine-code basic blocks.

One problem for flow-fact handling is the (possible) gap between the ABB level, which is directly
derived from the compiler’s immediate representation (IR) level, and the actual machine-code level.
As I have already discussed in Section 3.6, the compiler is, in principle, allowed to reorganize the
IR-level CFG in the machine code generation such that basic blocks from both sides cannot be
mapped easily onto each other. While this is not a problem for the formation of ABBs, as function-
and system calls are sequence points, it can be an issue for flow facts that are formulated over the
IR-level CFG structure. For example, such flow facts arise if we reuse of results from the compiler’s
control- and data-flow analyses to gain insight into the actual execution paths.

In order to safely use these and other ABB-level flow facts, I used control-flow relation graphs
(CFRG) [HPP13] to bring all flow facts down to the machine-code level. The CFRG is a meta-CFG
that relates the relative progress between the IR-level and the machine-level CFG. It is produced
by a modified compiler back end, which has to keep it up to date for every CFG modification that
changes the control flow. The nodes in the CFRG can contain one basic block from each side. If a
node references two blocks, we call it a progress node, as it indicates that the progress of the program
at certain location is in sync. Along these progress nodes, we are able to push ABB- and IR-level
flow facts down to the machine level.

Another problem, which we have postponed in the state layer (Section 4.4.2), is the global interrupt
countslimitation of interrupt occurrences with ILP constraints. As we have seen in the initial discussion of

the compositional WCRT analysis (Section 4.1), the number periodic and sporadic task activations
of preempting higher-priority tasks depends on, and prolongs, the WCRT of the low-priority task.
For the OS domain, we transfer this observation to ISRs, which implement the periodic and sporadic
thread activations (Section 2.1.2.1) and derive interrupt counts from the WCRT.

For this, we capture the value of the objective function, which is the weighted sum of count
variables and timing costs, in a (time-unit typed) ILP variable TW CRT . For each interrupt source i,
we introduce an interrupt count variable ‖imax‖ and constraint it as an upper bound with the WCRT
and its minimal interarrival time Ii . Furthermore, I take a possible release jitter Ji [Aud+93] of the
source into account:

Ii · ‖imax‖ ≤ (TW CRT + Ii + Ji)

The intuition behind this constraint is that the worst case occurs if: (1) the first interrupt occurs
exactly at t = 0 and, subsequently, every Ii and interrupt triggers. To express d TW CRT

‖imax‖
e as an ILP

constraint, we add Ii to the WCRT. For example, for an Ii = 30 and an TW CRT = 100, we would
get 30 · ‖imax‖ ≤ 130 and we would encounter up to 4 interruptions over our WCRT execution
path. (2) we account for the release jitter by assuming that the last interrupt occurs Ji ticks before
the execution path ends. However, we use a less-equal constraint here as the maximal number of
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interrupts may not lead to the WCRT in all cases. In a second constraint, we allow the solver to
distribute the interrupt count over all interrupt transitions Tirq,i that are associated with the source:

∑

t∈Tirq,i

‖t‖= ‖imax‖

With these constraints, the solver is allowed to distribute ‖imax‖ over all interrupt transitions.
Thereby, the solver has no restriction about clustering of IRQs and all interrupts can trigger in the
same ABB. Actually, the solver will prefer such clusters if one interrupt–iret loop is more expensive
than the others. While such a clustering does not obey the minimal interarrival time in a control-flow
sensitive manner, it is still valid as the resulting WCRT is a safe over-approximation of the actual
worst-case path. The clustering problem is rooted in the basic nature of the IPET, which does not
work with explicit paths but only with implicit execution counts. Therefore, I have not addressed
this problem any further for this thesis.

implementation
idiosyncrasies During the application of SysWCET for an OS implementation, another mapping problem between

the ABB level and the implementation level came to light. The problem arises for the activation of
ISRs: As the interaction model is implementation agnostic and only reflects the semantic but not the
mechanisms of the kernel, the ISR dispatch is not covered (see Figure 4.7). In the model, the first
block of the ISR starts immediately after the IRQ edge is taken. However, for the implementation, the
RTOS must distinguish between different IRQs in a central ISR-dispatching method if the hardware
delivers all interrupts by activating the same initial handler.

If we would consider only isr_uart() in Figure 4.7, we would miss the execution time of the
isr_entry() and the dispatch() function, which could lead to a fatal under-estimation of the
WCRT. Therefore, we have to include the top-level IRQ handler and all its child functions, including
our isr_uart(), in the ILP and use the ISR-level ABBs only to guide the execution flow to the actual
handler.

For this, we use the combined state count of all IRQ transitions (Tirq) to constraint the execution
count of the top-level handler and the ABB count guides the execution flow to the actual ISR:

‖ fisr_entry, ent r y‖=
∑

t∈Tirq

‖t‖ ‖ABBa‖= ‖BB1‖

These constraints, ensure that indirect function call in dispatch() will take the function-call
edge (Hdispatch→isr_uart) exactly ‖ABBa‖ times, as the glue layer demands it. With such constraints, we
can also handle other implementation constructs that do not directly map to the interaction model,
like the co-location of multiple alarms within one timer ISR.

4.5 Comparison to Compositional WCRT Analysis

HOLD: Besserer Übergang zum Kaptiel davor?

For the experimental validation, I integrated the SysWCET approach into dOSEK and the
platin [Hep+15] WCET framework and applied it to real-time systems of differing sizes. These
systems were compiled for the PATMOS [Sch+15b] processor architecture and I compare the com-
positional WCRT to a WCRT estimation that SysWCET calculated. For validation purposes, I also
measure the actual execution times, which must be strict smaller than the calculated bounds, in an
instruction-set emulator. With this evaluation, I do not only want to show that SysWCET in particular
can provide tighter WCRT bounds, but I also want to demonstrate that the non-compositional view
on WCRT analysis is possible (RQ1) and beneficial (RQ2).

78



4.5 Comparison to Compositional WCRT Analysis

ActivateTask(High)
ABBa

EUART

void isr_entry(int vector) {

dispatch(vector);

}

void dispatch(int n) {

handlers[n]();

}

void isr_uart() {

ActivateTask(High);

}
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Figure 4.7 – IRQ Handling in Operation Systems. On the level of the interaction model, the
ABBs of the ISR simply start to execute if an interrupt occurs. However, on the OS level there is
often a dispatching logic in place that precedes the execution of the ISR.

Besides the WCRT results, I also provide results for the size of the SSTG subgraphs, the ILP
complexity, and the time that is required to solve the optimization problem with a state-of-the-art
ILP solver. Furthermore, I will discuss the implications of the results and discuss the generalizability,
benefits, and limitations of the SysWCET approach.

4.5.1 Evaluation Scenario

The SysWCET evaluation is based on the PATMOS [Sch+15b] architecture, which was developed in
the T-CREST research project as the processor component of a more timing predictable computing
platform. With PATMOS, the researchers aimed for a better analyzability with regard to (worst-case)
timing analysis while maintaining an acceptable average-case performance. However, as SysWCET
is only a worst-case path analysis and does not change the hardware analysis, I used the PATMOS
instruction-set architecture as a basic processor model [Roc14], where each instruction takes exactly
one time unit. Thereby, I consciously neglected the influence of hardware components, like caches
or the pipeline, and the machine-code analysis become trivial.

As benchmark scenarios, I use different OSEK applications with a wide range of OS-usage patterns
and of different sizes. I analyze these applications with dOSEK, calculate the full SSTG, and extract
SSTG subgraphs for individual task, which can be implemented by one or multiple threads. For
each application, dOSEK generates an OSEK kernel, which is tailored on the instance level (see
Section 1.2, [�Fie+18]) for the given application (i.e., threads are statically allocated and initialized).
Furthermore, dOSEK exports the SSTG-subgraph structure and other analysis results, like the ABB–
basic-block mapping and additional kernel-level flow facts, in platin’s PML format [Pus+13]. The
generated kernel source and the application were compiled with the PATMOS toolchain, which
outputs not only a system binary but also produces additional PML files with information about the
IR-level basic blocks, machine-code basic blocks, CFRGs, and compiler-deduced flow facts.

The deduction of WCET and SysWCET-WCRT bounds is done with platin [Hep+15; Pus+13],
an WCET analysis tool that was developed in the T-CREST project and proved to be quite accessible
for my adaptations, as it is written in the ruby scripting language. platin combines the various
PML fragments and uses the IPET to formulate ILP problems for the WCET analysis of individual
functions. For the optimization of the ILP, platin provides several solver backends, from which I
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used the backend for gurobi [Gur19] 6.5.2. For the analysis run-time measurements, I ran dOSEK,
platin, and gurobi on a 16-core Intel E5-2690 machine with a processor speed of 2.90 GHz.

For the compositional WCRT analysis, I used platin to calculate the WCET of individual functions
and the thread-entry functions in isolation. For the WCRT analysis, I use the methodology of Audsley
et al. [Aud+93] and incorporate the following information, besides the WCET times, into the
composition: static thread priority, minimal inter-arrival times and periods.

In order to validate the deduced upper bounds, I execute the system binaries with the PATMOS
instruction-set simulator pasim and count the number of executed instructions according to the basic
processor model. As observed worst-case execution time, I give the longest observed execution time
between the timing_start() and functiontiming_end (see Section 4.4.1). However, as it is unlikely
that the executing system encounters the actual worst-case event sequence for larger benchmarks,
these observed times can only be considered under-approximations of the actual WCRT.

4.5.2 Micro Benchmarks

First, I will apply SysWCET to some small scale benchmarks where I can discuss the application
structure and the savings on the WCRT bound in detail. While these benchmarks are, for themselves,
unrealistically small for a real-world application, the included patterns of interaction can often be
found in larger applications. As SysWCET is context-flow sensitive and covers the RTOS semantic, it
is able to exploit these patterns equally in a small benchmark and the large application.

Listing 4.1 Triple Modular Redundant Application. The low-priority thread activates a high-priority
thread three times from a bounded loop.

1 TASK(HI_workload) { ... }
2

3 TASK(LO_control) {
4 →timing_start();
5 for (i=0; i < 3; i++) {
6 ActivateTask(HI_workload);
7 }
8 // Not shown: Vote over results
9 →timing_end();

10 }

The first micro benchmark (Listing 4.1) is a triple modular redundancy (TMR) application, which
can be found in safety-critical systems that employ software-based measures against transient
hardware faults [�Hof+14]. A workload, which is located in HI_workload, is critical for the correct
operation of the system but the processor is susceptible to encounter bit flips and other soft errors in
its execution. Therefore, the application executes the critical workload three times (LO_control)
and performs a majority vote over the results. The relative priorities of both threads results in an
interwoven execution of both.

For the benchmarks, I removed all the application code and inserted (short) busy-loops where
the thread would perform its computation phases. This simplification of the benchmark code allows
me to focus on the interaction between the application and the real-time operating system. It is
sound in the sense that whole systems has the same (potential) interaction patterns as the replaced
code blocks are located in computation ABBs or in non-system relevant functions.

The removal has two more consequences for the evaluation: (1) The ILP problem becomes
smaller as the ABBs have no real content, which will reduce the ILP solving time. (2) The reported
WCRT savings will be lower than what can be achieved for a full application: For example, if
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SSTG ILP Problem Worst-Case Response Time [instrs.]

ABBs States Vars Constr. Run Time SysWCET Compositonal Observed

TMR 9 9 248 458 94 ms 3 319 3319 2 893
Alarm 5 13 319 594 0.23 s 765 716 766733 764 785
Aborted Comp. 9 35 601 1 088 0.3 s 56 340 60425 55 738

Activate w/o Disp. 3 3 146 264 96 ms 318 318 123
Activate w/ Disp. 6 6 271 487 105 ms 596 596 395
Terminate w/ Disp. 6 6 266 478 131 ms 593 601 398
Wait & Wakeup. 6 6 232 416 124 ms 607 610 436
Interrupt w/ Sched. 3 12 155 290 99 ms 464 466 339

Table 4.1 – Results for the Micro Benchmarks.

SysWCET avoids a thread activation due to an infeasible path, the WCRT shrinks only by the kernel
overhead for the activation and the resumption, and not the WCET of that thread. Since (2) gives the
benchmark designer the possibility to increase the savings arbitrarily (by prolonging the excluded
thread execution time), I decided to remove the application code to avoid this evaluation pitfall.

The TMR benchmark is challenging for a compositional WCRT as there is a mapping mismatch complex
control
dependencies

between the RT domain and the OS domain: As the TMR application performs one chore redundantly
it can be considered as one individual task that contains a control part and a workload part. However,
the implementation on the OS domain chose to execute the workload in a separate thread with a
higher priority, which is controlled by and fully dependent on the lower-priority control thread. This
results in a situation, where the workload thread is activated with the same period as the control
thread but it is executed exactly three times as often. Therefore, a general compositional WCRT
analysis of this pattern would require a more complex WCRT formula, especially if other threads are
involved as well7.

However, for this micro benchmark, we can simulate the scenario and all three preemptions
manually and end up with a compositional WCRT for the two TMR threads of 3319 cycles. This
upper bound is 15 percent larger than the largest observed execution time. This overestimation
stems from kernel paths that the IPET considers but that are not taken in the real execution. A result
overview about this and all other micro benchmarks can be found in Table 4.1.

For the TMR, SysWCET constructs an ILP problem from a small SSTG subgraph with only 9
states where each state references a different ABB. This SSTG contains a state loop between both
threads. We constraint the loop with an upper repetition bound of three, which was automatically
deduced by the compiler, given to platin, lowered with CFRGs to the machine level, and added to
the ILP. However, as this loop constraints spans multiple ABBs, it also constraints the state layer and
the activation count of the workload thread is bound to three. SysWCET is only able to handle this
pattern automatically since CFG-level flow facts from the machine-layer directly constraint the state
layer. In the end, we get the same upper bound for the WCRT but in a fully automated manner and
without a manual extraction of the activation count for the workload thread.

The second micro benchmark (Listing 4.2) demonstrates the benefits of having an integrated view
on the kernel code and the real-time configuration. This benchmark contains two tasks implemented
in two threads and one timer ISR. The low-priority task is sporadic and implemented in thread
LO_computation, which performs some computation for over 750 000 instructions. For the periodic
task, the kernel triggers a timer ISR with a period of 100 000 instructions, which activates on every

7For example, if the TMR task with its two threads is executed together with a medium-priority, the WCRT of the medium
priority task is surprising: the WCRT is around 1 ·W C ETHI +1 ·W C ETM E as the medium-priority thread blocks the activation
of the two other TMR workload executions.
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Listing 4.2 Computation Interrupted by Periodic Alarm

1 TASK(LO_computation)() {
2 →timing_start();
3 /* 760 021 instrs.*/
4 →timing_end();
5 }
6 TASK(HI_urgent)() { ... }
7

8 ISR(timer) {
9 counter++;

10 if (counter % 3 == 0) {
11 ActivateTask(HI_urgent);
12 }
13 }

third interruption the high-priority thread. The kernel activates the high-priority thread after the
completion of the interrupt.

The challenging part of this benchmark is hidden in the kernel paths in the timer ISR. For the
compositional approach, the WCET of the timer ISR is calculated once and, thereby, the activation
of thread HI_urgent extends the WCRT bound for every interruption although it is only triggered on
every third IRQ. Although it would be possible to calculate different WCET bounds (i.e., with and
without activation) and use it in a specialized WCRT method, this approach becomes infeasible if the
number of alarms increases; the number of different bounds would grow exponentially. Even worse,
the kernel code that implements the timer ISR does not necessarily look as simple as Listing 4.2
suggests, but probably uses a more dynamic data structures, like linked lists.

Here, SysWCET wins through its implicity and as the flow graph of the timer-ISR implementation
and the maximal number of interruptions and alarm activations are available in one ILP problem
(see Section 4.4.5). With the number of interruptions, we constraint the execution count of the ISR’s
entry block. With the number of alarm activations, we limit the function-call edges from the ISR
to ActivateTask(). Thereby, the ILP solver will figure out the correct execution counts between
the ISR entry and the activation, regardless of the ISR’s control flow. This is similar to the situation
described in Figure 4.7.

For the WCRT analysis of the low-priority task, both analyses derive that the timer triggers 8
times. However, SysWCET accounts for only 3 alarm activations and, therefore, derives a 1017
cycles tighter bound than the compositional approach. If we take into account that the main driver
of the WCRT is the computation in the low-priority thread and subtract its constant share of 760 021
cycles, SysWCET derives a 15 percent tighter bound for the remaining parts.

The third micro benchmark (Listing 4.3) highlights the benefits of taking the system-call semantic
and the induced RTOS–application interaction in the WCRT analysis into account. The benchmark
contains one task that performs one background computation, which can be aborted by an external
event. Our WCRT path starts in the high-priority thread HI_control, which activates the low-priority
worker thread and waits passively for the completion or the abortion signal. These events are signaled
after the computation completes or in the sporadically occurring abortion ISR, which has a minimum
interarrival time of 10 000 cycles.

The challenges of this benchmark are threefold: First, it includes, with HI_control, a self-
suspending thread, which are considered challenging for response-time analyses in general [Nel18].
Second, the benchmark includes a complex interaction pattern that depends on the concrete se-
mantic of the WaitEvent() system call, which waits for at least one signal to arrive. Third, the
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Listing 4.3 Abortible Computation

1 TASK(HI_control) {
2 →timing_start();
3 ActivateTask(thread_LO_computation);
4 WaitEvent(sig_done || sig_abort);
5 →timing_end();
6 }
7

8 TASK(LO_computation) {
9 do_computation(); // 55613 instrs.

10 SetEvent(HI_control, sig_done);
11 }
12

13 ISR(abort) {
14 SetEvent(HI_control, sig_abort);
15 }

actual response time decreases if the abortion interrupt occurs too early as it brings the control-flow
directly back to the timing_end() marker without completing the computation.

The compositional WCRT analysis computes the WCET for each thread and the ISR individually.
With the information that both threads belong to the same task, we account for one full execution of
each thread in the WCRT. However, for the ISR, the compositional approach must assume, as it uses
no control-flow sensitive interaction information, that the interrupt occurs seven times during WCRT
time span (minimal IAT=10 000). It is noteworthy, that we must add the seventh interruption only
because the ISR execution itself prolongs the execution time too much. In total, the compositional
approach ends up with a WCRT bound of 60425 cycles.

On the other hand, the SysWCET approach is able to derive a very tight bound that is close to
the maximally observed response time (+ 1.08 % overestimation). From, the ILP execution counts,
we can even recover and confirm the actual worst-case scenario. For this benchmark the response
time becomes maximal if the computation completes without interruption and the ISR triggers
exactly before LO_computation invokes the SetEvent() system call. The solver selects, rightfully,
this path as the combination ISR+SetEvent(sig_abort) is more expensive that completing with
SetEvent(sig_done) alone. So in the worst case, the computation completes but the sporadic
events invalidates it before we know about it.

HOLD: SysWCET: Ein Beispiel mit einem zusätzlichen Flow Fact wäre sehr nice.

Besides these application-sized benchmarks, I also want to demonstrate another benefit of the
SysWCET approach. Since the chosen SSTG-subgraph-selection strategy uses function call sites as
start and endpoints of the WCRT time span, we can give upper bounds for the execution of different
system calls in their context. This includes ActivateTask() calls with and without a following
dispatch, TerminateTask(), WaitEvent() with immediate wakeup through aSetEvent(), and an
ISR with following reschedule. The results for these nano benchmarks can be found in the lower
half of Table 4.1.

For these micro and nano benchmarks, the complexity of the analysis itself is naturally very low
(see Table 4.1) and stays always below 0.5 seconds. However, we can get a first impression about the
driving factors of the analysis run time. For this, I show for every benchmark the number of SSTG
states and the number of referenced ABBs. While the former gives us an impression of the variability
of the dynamic execution paths, the latter denotes the static complexity of the application. In all
cases, there were at most 25 percent more SSTG transitions than states. As all benchmarks include
no real computation, the influence of varying application code is eliminated. If we compare the run
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time for TMR and the aborted computation case, we see that the increased number of SSTG states
has a higher impact on the analysis run time than the larger number of application code blocks.

4.5.3 i4Copter: A Realistic Task Set of a Safety-Critical Real-Time System

While the micro benchmarks illustrate specific situations where the SysWCET approach outperforms
the compositional approach with regard to easier applicability and tighter WCRT bounds, I also apply
my approach to a larger RTCS that reflects the structure of a real-world application. For this, I derived
a benchmark from the i4Copter [Ulb+11], a safety-critical embedded control system for quadrotor
helicopters, which was developed in cooperation with Siemens Corporate Technology. From the
application, I extracted the task set and the thread setup (Figure 4.8) without the computation
code in order to focus on the application–RTOS interaction. As this application is also used in other
evaluations, I will describe its structure in more detail.

From the RT perspective, the i4Copter consists of 4 tasks of which 3 tasks (#1, #2, #4) are
periodic and one is sporadic (#3). The tasks are prioritized with rate-monotonic scheduling and
perform (from the highest priority to lowest) different actions: Task #1 (5 threads) samples the
digital and the analog sensors and performs sensor fusion. Task #2 (3 threads) executes the flight
controller and updates the actuators. Task #3 (1 ISR, 2 thread) receives and interprets signals from
the remote control, and the watchdog task #4 monitors the remote-control channel (1 thread).

On the implementation level, the access to the SPI bus is coordinated with an OSEK resource, since
multiple threads require it to communicate with their respective peripheral devices. Furthermore,
two threads (Flight Control and Watchdog) are marked as non-preemptable, the periodic alarms are
automatically started at boot time and only the watchdog timer is reconfigured at run time. The
dOSEK RTOS manages these periodic activations with one timer ISR, similar to Listing 4.2. All in all,
the i4Copter consists of 11 threads, 3 alarms, 1 user-specified ISR, and one OSEK resource.

For the interaction analysis of the i4Copter, I use the application’s control-flow graphs, the system
configuration, and information about the task affiliation of each thread, as well as the assumption
that the task’s period is equal to its deadline. Together with the task affiliation, this assumption
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forbids the release of a new job before the last job has finished (see Section 3.3.3.1). On the SSTG
level, this constraint reduces the graph size significantly as an IRQ edge is only allowed if all threads
from a task have finished.

In Table 4.2, we see the WCRTs analysis of the three top-prioritized tasks (#1-#3), as well as the
SSTG characteristics and ILP sizes. For the WCRT bounds, we see that SysWCET consistently provides
a tighter bound (−10.5 %,−7.74 %,−7.33 %) than the compositional approach. This saving is rooted
in an inter-thread control-flow constraint within task #1: the initially activated sampling thread
(3ms) activates (mutually exclusive) one of the two other sampling threads upon a dynamic decision.
While the compositional approach must account for both thread activations and the respective RTOS
overheads, SysWCET is able to exclude the thread with the lower execution cost from the worst-case
path. Since task #1 has the highest priority in the system, the WCRT savings in this task propagate
also to the lower-priority tasks (#2,#3) as their WCRT account for one job release from task #1.

Since this benchmark is much more complex than the micro benchmarks, the actual worst-case
event sequence that triggers the WCRT is hard to find and hard to simulate. Therefore, my the
benchmark runs probably did not trigger these worst-case situations, which explains the large
difference between calculated and observed response time.

For the SSTG size, we see that the number of states decreases as the more tasks and ABBs are
covered. While this seems counter-intuitive, it stems from the constraint about the re-occurrence of
interrupts: For the WCRT of task #1, the IP-stack ISR (#3) can trigger in every computation block
and set the remote-RX thread ready (in the background), which effectively doubles the state graph.
For task #3, one of two threads (Remote RX or Copter Control) are ready or running for the whole
worst-case path and therefore no interrupt can reoccur; the state space is not doubled.

For the analysis complexity, we see no clear solving-time trend that can be directly derived from
the SSTG or the ILP characteristics. However, the solver finds a solution in reasonable time (< 180s)
for the three tasks, especially if we consider that the analysis is done offline. Nevertheless, if we
consider that these benchmarks excluded the application code, the scalability of could become an
issue, which I discuss in the following section.

4.5.4 Discussion

SysWCET formulates an integrated ILP problem with IPET that combines the RTOS scheduling
(state layer) with the application and the machine-code layer. Thereby, we can avoid problems
of compositional WCRT analyses but encounter different issues and limitations. In this section,
I will shine a light on these limitations and discuss further benefits of the approach for timing
analysis before Section 4.6 describes how the SysWCET approach can be applied to worst-case
energy consumption.

SSTG ILP Problem Worst-Case Response Time [instrs.]

ABBs States Vars Constr. Run Time SysWCET Compositonal Observed

#1: Signal Gathering 33 9 506 16 269 30432 14.72 s 5626 6 286 1168
#2: Flight Control 55 7 690 16 528 30666 161.56 s 9279 10 057 2261
#3: Remote Control 63 4 608 12 987 26849 92.57 s 9768 10 541 790

Table 4.2 – WCRT Results for the i4Copter.
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4.5.4.1 Scalability of SysWCET

In the evaluation, we have seen that the ILP solving takes a considerable amount of time for the
i4Copter benchmarks. While the i4Copter with its eleven threads, seems like a relative small system,
it is not uncommon in some domains, like automotive, to have systems in this size range. For
example, the popular ERIKA-OS [Evi12], which also implements the OSEK standard, provides only
32 distinct priorities on a 32-bit machine and, therefore, can have only 32 threads with distinct
priorities (BCC1/ECC1).

The main issue for the SysWCET scalability is the potentially exponential growth of the SSTG
with increasing system complexity and size (see Section 3.3.3), as SysWCET searches (implicitly) for
a path through the explicitly-enumerated SSTG. Especially, the nondeterminism that is introduced
by interrupts is one of the driving factors for the SSTG growth, which directly maps to a growth
in ILP variables and constraints. In Section 3.3.3, I already outlined different strategies to cope
with this problem by (1) incorporation of more knowledge about the system and (2) use a more
condensed and imprecise interaction model.

The incorporation of more knowledge about the system is the preferable variant to cut down on
the SSTG size, as it does not influence, or even benefits, the tightness of the WCRT bounds. During
the SSTG construction, we can include more information about the environment of the system
(e.g., constraints on interrupt occurrences) or the application logic (e.g., avoidance of infeasible
paths). On the application-level, these considerations are similar, and we can reuse results from, the
infeasible-path analyses that were done for the WCET analysis [BH13; BLH14].

The other possibility to shrink the ILP problem size, without changing the SysWCET method,
would be to use a more condensed interaction model, like the GCFG or other merged SSTG variants
(see Section 3.3.3.2 and Section 3.4.1). Thereby, the interaction model looses precision as different
global paths through the system are considered equivalent although they are triggered by different
event sequences. This results in fewer constraints on the execution path and, therefore, in an
increased likelihood that the deduced worst-case path is a less tight over-approximation of the actual
one.

Another idea, which is a topic of further research, is to replace the SSTG and the state layer
with an ILP fragment that grasps the interaction implicitly. For this, we would have to encode the
RTOS scheduling rules and the system-call semantics with ILP and bind it to the thread’s CFGs.
For example, the execution count of an ActivateTask() ABB would restrict the execution count
of the activated thread’s entry block. Here, one problem, which has to be solved for this implicit
formulation, is to restrict the system-call effect to the blocks that follow the system call (i.e., the
thread dispatch must happen after the ActivateTask()). Thereby, we could keep the benefits of
SysWCET (i.e., cross-thread flow facts) without the state-explosion problem of the SSTG.

4.5.4.2 Limitations to the Applicability

One problem for the general applicability of SysWCET for the WCRT analysis is its dependence on
the SSTG extraction and the, thereby, induced requirements on the system model. As discussed
in Section 2.1.3 and Section 3.5, my interaction analyses require a static, fixed-priority, real-time
computing system with known control-flow graphs. Therefore, SysWCET cannot handle systems that
use scheduling strategies with dynamic job-level priorities or systems with dynamic code loading.
While the first restriction is an obstacle that a developer can actually encounter, the second one is
only hypothetical, as we can never give a strict timing bound for a system that changes its code at
run time.
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The other limitation of SysWCET is less obvious and is related to self-suspending tasks that wait
on some external event (unlike micro benchmark #3, which waits for the completion of another
thread). The problematic pattern arises, if a thread waits for an event variable (WaitEvent()),
which is signaled via an external sporadic event (i.e., SetEvent() in an ISR). In the most trivial case,
there is no other thread in the system and after the WaitEvent() the system goes to sleep. These
sleep states, which are often implemented as an idle loop, are in principle not bounded. Without
further constraints, the ILP problem would become unbounded as we have no information about
the duration of the sleep.

The first solution would be to require information about the maximal interarrival time of the
sporadic event that leads to the thread wake up and derive a minimal interrupt count from the
idle time. While this is sound for situations where the system enters the idle loop once, it is a
harsh over-approximation for the WCRT. In the following, I will explain (1) why the approach is an
over-approximation and (2) that the structure of self-suspension is problematic in general.

The proposed solution, which bounds the idle time with the maximal IAT, is depicted in Figure 4.9a:
After one time unit of execution, the thread issues a WaitEvent() system call and enters the idle
loop. It is only at this point in time, where the counter for the maximal IAT starts to count down.
Two time units later (t = 3), the wake up happens, and we end up with an WCRT of 4. However,
this is an over approximation of the WCRT with the given program and the given information.

For comparison, the actual WCRT scenario is shown in Figure 4.9. In the worst case, the last
signaling of the wake-up event happened at t = 0− ε and we have to wait for the full maximal
interarrival time, which happens after one second of idle time. As the thread executes for one time
unit before the sleeping, its first execution phase also accounts for the maximal interarrival time.

The inherent problem for IPET-based WCRT analyses is that this scenario requires a notion of
execution order. There is a before the sleep, which accounts for the maximal IAT, and an after the
signaling, which, of course, does not account for the maximal IAT. However, IPETs do not have this
notion of execution order, as they are implicit, and we could only emulate order by partitioning the
application in a before-ILP and an after-ILP, where only the former, together with the idle time, must
be smaller that the maximal IAT. With this partition, a modified SysWCET could determine a tight
bound for the example system.

However, while this would work for our example with one task and one signal that arrives only
once, the situation becomes much harder if the system complexity increases. If there is a loop of
computation and sleep time and one wake-up signal that executes N times, we would require N − 1
different before-ILPs, as the maximal IAT is reset on every occurrence of the signal. Even if we could
determine an upper bound for N beforehand, our approach still handles only one activating signal. In
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(a) The Idle Over Approximation. If we restrict the idle time
with the maximal IAT, the maximal IAT counter starts with
the start of the idle loop.
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(b) The Actual WCRT Scenario. In the worst case, the last
signaling happened right before the thread dispatch and the
thread’s execution time counts also on the maximal IAT.

Figure 4.9 – Problems with Self-Suspending Tasks and Idle Times. Example with a self-
suspending thread with an execution before and after the sleep of 1 (WCET=2). The maximal
interarrival time of the wakeup is 2 time units.
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essence, we would have to generate explicit SSTG regions of computation between two idle phases
and link them to the maximal IAT.

From a more philosophical point of view, IPET-based timing analyses encounter the described
problem as they have only one “clock”: the objective function. While this single clock is enough to
handle the sleeping thread that is woken by another thread (micro benchmark #3), which executes
on the same clock, it is problematic for external events. In our example, we have two competing
clocks: execution time of the program and the interarrival time of the interrupt. The wake-up (the
edge from idle to thread) happens if both clocks expired. Combined with absence of execution order
in IPET-ILPs, the problem becomes challenging and is a topic of further research.

Despite all these problems with sleeping threads that are woken by external events, I believe
that such idle situations are not typical for the interesting safety-critical paths in a real-time sys-
tem. Furthermore, with the restriction to the idle time (Figure 4.9a), we have a working over
approximation.

4.5.4.3 More Complex Hardware Models

Another topic for the presented SysWCET approach is the incorporation of more complex hardware
models that exhibit hardware-induced delays and inter-dependencies between executed instructions.
These effects have been widely studied for WCET analysis and include effects from pipelines [SEE01],
data- and instruction caches [FW99], shared buses [CRM10], and DRAM access [WKP13]. Further-
more, besides the inherent hardware complexity, many architectures exhibit timing anomalies [LS;
Hec+03], where a locally longer execution path does not result in the actual WCET path. The
classical example is a branch mispredict that leads to the accidental prefetching of a later required
cache line. As hardware-timing analysis is a problem field of itself, I do not cover it with this thesis
and keep its integration with SysWCET as a topic of further research. However, I want to outline
directions for this integration.

While we could analyze the machine code of each basic block (or even ABB block) in isolation, a
more integrated approach is desirable as it promises tighter WCRT results. For example, Li, Malik, and
Wolfe [LMW96], Engblom [Eng02] and Theiling [The02a; The02b] presented methods to integrate
hardware analysis into IPET-based WCET analyses. As SysWCET is also based on the IPET and uses
graphs with control-flow semantic on state- and machine layer, these methods should, in principle,
be composable with SysWCET.

Hardware analysis, and especially cache analysis [LMW96], benefits from longer execution paths
as a filled cache line can be hit more often. If such a long execution path is split into many small
parts, the analysis must assume, at every path beginning, that the cache is empty. Here, the cache
analysis could benefit from SysWCET as its whole system view as the SSTG captures all possible
execution paths through the system. For example, if a cache line stays in place even if the current
thread is only briefly preempted synchronously by another thread, the regular cache analysis would
have to assume that the cache set is empty after the preemption. With SysWCET, the longer execution
path (through the SSTG) could help to identify the situation correctly and, thereby, SysWCET could
refine the cache-related preemption delay [BRA09].

4.6 Application to Worst-Case Energy Consumption

The presented SysWCET approach is able to determine the response time of a thread within a whole
RTCS. However, time is not the only physical resource that is consumed during the execution of a
program but the RTCS will also consume energy for its operation. While a large energy consumption
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is a significant financial burden for data-center operators, it becomes mission critical for energy-
constrained systems [VHL14]. Energy-harvesting systems, which operate on a small battery that is
replenished by extracting energy from the environment (e.g., photovoltaic) [Wäg+15], are examples
for such constrained systems. If these systems are safety-critical, it is often not enough to know that
the execution will finish in time but it must also be proven that it’s energy consumption stays within
a given energy budget. In a nutshell, without a powered processor, we will never reach a deadline.

Many authors [Wäg+15; VHL14; CKL00; KE15] focus on the energy consumption of the processor
for the worst-case energy consumption (WCEC) analysis and assume a continuous and constant power
drain for the peripheral devices [LZA09]. However, there are two important aspects that make this
CPU-centered view problematic for energy-constrained systems: First, the power consumption of
the processor is often much smaller than the consumption of the peripheral devices. For example,
the NXP FRDM KL46z [Fre13], which is an energy-optimized ARM M0+-based development board,
drains at 3.3 V around 5.6 mA if it executes instructions [�Wäg+18]. However, an attached ESP8266
Wi-Fi transceiver [Sys17] module drains 87.6 mA at 3.3 V. Second, as some peripheral devices,
especially transceivers, have such a large energy consumption, they are switchable and turned on
only if the system requires their service. Combined, these problems can lead to significant over
estimations of the actual energy demand if the consumption of the peripheral devices is considered
to be static.
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Figure 4.10 – Worst-Case Energy Consumption with Switchable Device. Example system (power
drain=5.6 mA) with one thread that activates an external transceiver (power drain=30 mA).
Adapted from [�Wäg+18].

Figure 4.10 exemplifies the situation with one thread, one switchable device, and a typical
use-case scenario: The thread performs some preparation (A) before it activates the (energy-hungry)
devices (B), transfers data, and receives an answer. After the deactivation of the device, the thread
processes the answer (C), while only the processor consumes energy. If the WCEC analysis assumes
the maximal power drain for the whole execution time, we have a huge over estimation (= integral
below the red dashed line) over the actual energy consumption (= integral below green line).

In this section, I want to present SysWCEC, which is an adaption of the SysWCET approach to
the energy-consumption problem. The goal is to determine an upper bound of the consumption for a
system with switchable devices that executes and completes a given thread within a complete set of
threads. This application of the SysWCET approach was presented in Wägemann et al. [�Wäg+18].
The main part of the contribution was done by Peter Wägemann and I had the pleasure to work
with him on the adaption and the integration of SysWCEC into platin. However, with SysWCEC,
I want to show the flexibility of the SysWCET approach and the benefits of an interaction-aware
analysis for energy-consumption bounds as a second important consumable system resource.
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4.6.1 System-State Dependent Energy Consumption
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(b) IRQ After Device Activation

Figure 4.11 – Energy Consumption on Different System Paths. Depending on path trough the
threads and the kernel, the energy consumption can vary significantly as the device power state
is carried into the higher-priority thread (H). Adapted from [�Wäg+18].

For a tight upper energy-consumption bound for this program (Figure 4.10), we multiply and
add the WCETs of each section (A, B, C) with the power drain of the system in the respective section.
Thereby, the power drain is determined by the power state of the system, which consists of thepower state
operation mode for each system component. The result is the worst-case energy consumption of the
thread; the energy consumption in isolation. However, as we already know from the WCRT analysis,
there is normally more than one thread, and we have to calculate the WCRE, which considers the
WCEC of the thread itself, as well as the consumption and the influence of the other execution
threads. Unluckily, with the presence of switchable devices, a compositional approach, which would
combine multiple WCECs into a single WCRE, works even worse than for the timing analysis.

In Figure 4.11, we see the energy consumption of the thread from Figure 4.10 if it is collocated
with an ISR that activates a high-priority thread H (see Figure 4.12). The two graphs show different
paths through the system: In Figure 4.11a, the interrupt triggers before the device is activated (A)
and the thread H executes in the low-power mode. Here, the blue area reflects the WCEC of thread
H as it does not use the device itself. However, if the ISR activates thread H while the peripheral
device is active (Figure 4.11b), we trigger the actual system-wide worst-case scenario and the blue
area is the WCRE consumption of thread H.

From the example, we see that the WCEC and the WCRE can differ significantly, even for
high-priority threads. The WCRE does not only depend on its own execution time and all higher-
priority threads but also on those lower-priority threads that manipulate the peripheral power state.
Furthermore, as the power drain of peripheral devices can determine the overall energy consumption
to such a large degree, a shorter execution path can outweigh the energy consumption on the WCET
path. All in all, for a tight WCRE bound, we have to consider the local control flow, interrupts,
the scheduling decisions on very fine-grained level, and different power states as they propagate
between the threads.

With the SSTG and SysWCET, we already have a method that combines the thread-local control
flows, interrupts, and the scheduling decisions in a worst-case analysis. However, we have to modify
the approach such that it also considers different power states and calculates the WCRE instead of
the WCRT.
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4.6.2 SysWCEC – SysWCET for Energy Consumption

For SysWCEC, which is the application of the interaction-aware SysWCET analysis to energy con-
sumption, we modify the approach at three different locations: (1) In the ABB construction, we make
smaller CFG partitions such that the power state is constant throughout each block. (2) The power
state of the system becomes part of the AbSS and is considered in the system-state enumeration (SSE)
analysis such that each SSTG state executes under a definite power state. (3) In the ILP construction,
the energy consumption becomes the objective function, while we still require the worst-case path’s
execution time for deriving an interrupt count.

First, we modify the formation of ABBs such that they are not only atomic from the RTOS’ PABB
point of view, but also for the power-drain perspective. For this, we demand that each change in
the system’s power state is explicitly noted in the source code. This can either be achieved by using
explicit function calls (e.g., ActivateDevice(), DeactivateDevice()) or by other fixed search
patters that are matched against the application code. With this requirement, we also restrict the
usage of SysWCEC to problems where the power state of the peripheral devices is synchronously
controlled by the application. We explicitly excluded systems, where other system components, like
an independently-operating power-management chip, or the device itself changes the power state
of the system.

With these explicit points in the application code that change the power, we further partition
the system into more fine-grained power atomic basic blocks (PABBs). The normal ABB formation
(see Section 3.2.2), splits the CFGs, at the system-call sites, into computation blocks and system-call
blocks. For PABBs, we further partition the computation blocks into smaller single-entry single-exit
regions at the explicit power-state changes. Basically, every point where the power-state changes
becomes a pseudo system-call site and the location is split out into its own PABB. Without loss of
generality, I will use ActivateDevice() and DeactivateDevice() as power-state pseudo system
calls. With this construction, the system’s power state is constant for one execution of a PABB but
not necessarily the same fo all PABB executions.

In Figure 4.12, we see the (condensed) PABB partitions for our extended example system, where
the pseudo system calls were merged into their preceding PABB for a more concise presentation.
The activation and deactivation of the peripheral device splits up the single computation ABB into
more fine-grained PABBs. It is noteworthy that we still handle interrupts in the same way as for
ABBs: PABBs can be interrupted in general, but we make no assumption about the exact location.
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Static State-
Transition
Graph

With the power-state aware PABB-CFG, we execute a modified SSE analysis that generates a
power-state–aware SSTG. For this, we extend each AbSS with a power-state field, which indicates

Thread Low

[Perform some work]

//Activate transceiver

ActivateDevice(TX);P
A
B
B
A

[Use device]

// Deactivate transceiver

DeactivateDevice(TX);P
A
B
B
B

[Perform more work]

P
A
B
B
C

// Handle interrupt
ActivateTask(High);

P
A
B
B
I

ISR

E

// Handle Event

[Event handling]

P
A
B
B
H

Thread High

A

B

C
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E
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Figure 4.12 – Power Atomic Basic Blocks. Explicit power-state change functions partition the
ABB-CFG graph into a PABB graph, where the system’s power state is constant during a block’s
execution. Adapted from [�Wäg+18].
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the power drain of the considered peripheral devices. In the simplest case, each device is associated
with its idle or its active drain. However, more complex consumption patterns are possible as long
as the number of different device states remains discrete. In our example with one processor and
transceiver (see Figure 4.10), there are two possible power states (CPU, TX), which we can directly
derive the system’s power drain in a given AbSS.

state.power_state= (5.6mA, 0mA) state.power_state= (5.6mA, 30mA)

Furthermore, we interpret the pseudo systems calls in the SSE to manipulate these power states.
For example, the ActivateDevice(TX) generates a followup AbSS that includes the right power
state with an overall power drain of 35.6 mA. This combination of power state and RTOS state in
the explicit SSE gives us a differentiated picture on the power drain in each state. For example, if
a device is enabled only conditionally, the SSTG contains different nodes for the following code
blocks; one with and one without the device’s consumption. The cost of this detailed picture is a
further increase in the SSTG size as, potentially, the number of consumption levels for each device
is multiplied with the already huge state space. However, the same arguments and size-reduction
strategies that I already discussed for the SSTG (see Section 4.5.4.1) apply here equally.

Power
Consumption
in ILP

As the last step of the adaptation, we have to integrate the power-aware SSTG into the ILP
formulation such that the maximization objective becomes the WCRE instead of the WCRT. Basically,
we still have to calculate the WCET for each ABB and multiply it with the overall power drain of the
respective system state in order to get the energy consumption. So, in principle, the formulation of
the ILP is the same as for the WCRT problem (see Section 4.3) and we use different costs in the
maximization objective.

However, the WCRE ILP has the problem of mixing up execution counts of different power states.
As we see in Figure 4.3, all states that reference the same ABB lead to an increased execution count,
regardless of the AbSS’s power-state. Therefore, we have to derive multiple ABB execution counts
‖ABBn, P‖, one for each power state P in which the block ABBn gets executed. For this, we derive
the overall ‖ABBn‖ count in the glue layer, as described in Section 4.4.3 and distribute it among all
power-state specific counts with an ILP constraint:

‖ABBn‖=
∑

‖ABBn, P‖

In order to prevent the solver from choosing only the most energy-consuming ‖ABBn, P‖ in this
summation, we restrict its execution count with the respective AbSS counts:

‖ABBn, P‖ ≤
∑

{ ‖s‖ | s ∈ S, (s.next_ABB, s.power_state) = (ABBn, P)}

Similar to the WCRT formulation, this avoids the duplicated execution of one ABB if it is in-
terrupted and resumed multiple times. However, it also gives the solver the freedom to shift ABB
executions to higher power states if the state counts allows for it. This becomes important if an ABB
is interrupted in a low-power state, the interrupt activates an external device, and the execution
resumes to the same ABB but in a high-power state. In this case, ‖ABBn‖ is one and the solver has
the freedom to set that ‖ABBn, P‖ to one that maximizes the WCRE.

The problem of mixing up different power states reproduces also to the machine layer. There,
we solve the problem by duplicating the variables for basic blocks, flow edges, and function calls
for each power state they can execute on. We connect the power-state specific ABB counts to the
power-state specific ABB-entry basic block. Alternatively to the duplication, we can calculate the
WCET of each ABB beforehand and use the result in the SysWCEC ILP.
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For the WCRE objective function, we multiply and add the power-state specific basic-block counts
with the product of basic-block WCET and the per-time-unit power drain of power state. Furthermore,
we can add additional energy budgets at state–state transitions to reflect energy costs that arise
when a device is activated or deactivated (e.g., loading of capacitors):

EW CRE =
∑

‖BB, P‖ ·W C ETBB · POW ERP
︸ ︷︷ ︸

constants

+

Device de-/activation costs
︷ ︸︸ ︷

∑

s1,s2∈S

‖s1→ s2‖ · Eswitching

While we make EW CRE the maximization objective, we still have to calculate the response time
TRT of the energy–worst-case path for the global restriction of interrupt counts (see Section 4.4.5).
All in all, the SysWCEC method for calculating the WCRE is able to provide control-flow sensitive
energy-consumption bounds.

4.6.3 Experimental Results

For the evaluation of SysWCEC, we compare the calculated WCRE bounds of the fine-grained and
energy-aware ILP formulation to the always-on approach. Again, we use the PATMOS research
processor [Sch+15a] as the target platform and count every instruction as a single cycle (basic
processor model). To derive an energy consumption, we assume that the processor runs at 1 MhHz,
has a static power drain of 8 mA, and is operated at 3.3 V. Thereby, every instruction consumes 26 nJ
of energy in the processor. We attach one switchable peripheral device with a power drain of 80 mA
(= 260 nJ per cycle) if switched on. Switched off and for the switching on/off operations, the device
does not consume any energy. Both drain values, for processor and peripheral, are in the same order
of magnitude as an KL46Z board with an attached ESP32 Wi-Fi module.

With this energy model, we analyze four micro benchmarks to highlight the benefits of SysWCEC.
For the comparison, we calculate a WCRE estimate with the always-on method, where we multiply
the WCRT (calculated with SysWCET) with the maximal power drain (88 mA). Like SysWCET,
we integrated the SysWCEC method into platin and dOSEK, which also generated the kernel
implementation. The analyses were run on a server (Intel Xeon E5, 80 cores, 132 GB RAM) and we
used Gurobi 7.5 for ILP solving. Furthermore, we cut off the ILP construction before the machine-
layer generation and used pre-computed per-ABB WCET estimates. Table 4.3 gives an overview
about the micro benchmarks, which I will describe in the following.

Benchmark #1 – Transceiver Benchmark: The first micro benchmark is the running example
for SysWCEC (Figure 4.12). The low-priority thread spends about the same time in each of its three
PABBs (1138, 1126, 1143) and activates the transceiver for the middle PABB. On interrupts, which

WCRE Estimate

Benchmark All-Always-On WCRE SysWCEC Improvement

#1 Transceiver (w/o resource) 4389µJ 3786µJ 13.7,%
#2 Transceiver (w/ resource) 4474µJ 819µJ 81.7,%
#3 Synchronous activation 2266µJ 1236µJ 45.5,%
#4 Asynchronous IRQ 400µJ 335µJ 16.1,%

Table 4.3 – SysWCEC WCRE Estimates. We compare the estimates on the worst-case response
energy consumption that was produced by SysWCEC with the always on approach.
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occur with a minimal IAT of 100 000 cycles, the ISR executes (428 cy) and activates the high priority
thread, which executes a long-running computation (11277 cy).

With SysWCEC, we get a 13.7 percent tighter bound on the WCRE than with the always-on
method. This tighter bound is possible as the low-priority thread spends about 2/3 of its execution
time with an deactivated transceiver. Thereby, SysWCEC must only account both energy consumers
for 85 percent of the worst-case response time. Also, SysWCEC correctly identifies that the interrupt
and the execution of thread High must happen in the ABBB (Figure 4.11b).

Benchmark #2 – Transceiver Benchmark with Resource: The second benchmark is a modified
version of benchmark #1 that tries to minimize the actual energy consumption by forbidding the
preemption from Low to High if the transceiver is currently active. For this, we introduced an OSEK
resource that both threads can acquire such that the ceiling priority (Section 2.1.2.3) of the resource
is higher than the priority of thread High. In thread Low, the activation and deactivation of the
transceiver is enclosed and protected with this resource. As a consequence, the interrupt can still
occur during ABBB, but thread High is only scheduled after the device is deactivated and the resource
is released. Thereby, the time span that has to be spent with an active transceiver is limited to ABBB,
which is only 7.4 percent of the worst-case response time.

For this benchmark, the difference to the always-on approach is even larger. While the always-onRTOS services
approach still accounts 88 mA for about the same WCRT as in benchmark #1, SysWCEC determines
an 81.7 percent smaller WCRE consumption. This gap arises as SysWCEC is able to correctly identify
energy-consumption reduction that was achieved programmatically by using RTOS services.

It is noteworthy, that we see here another instance of the RT–OS mapping problem (see Sec-
tion 2.2.1) as the usage of the OSEK resource does stem not from timing requirements in the
RT domain but from energy-conservation considerations on the implementation level. Again, the
interaction-aware and implementation-oriented approach that I propose with this thesis is able to
bridge the gap between RT and OS/implementation domain.

Benchmark #3 – Synchronous Task Activation: In the third benchmark, a low-priority thread
activates the same high-priority thread with a longer running computation twice in a row: once with
deactivated and once with activated transceiver. This benchmark is an example where the activation
and the power-drain level of a high-priority thread is directly dependent on the control flow of a
low priority thread.

As the same thread is executes twice and the execution time of the high-priority task dominatescontrol-flow
sensitive the WCRT, SysWCEC deduces that the receiver is active at most about 50 percent of the benchmark

As a result, we are able to calculate a WCRE bound that is 45.5 percent tighter than the always-on
estimate.

Benchmark #4 – Asynchronous Events: The fourth benchmark demonstrates the fundamental
difference between control-flow sensitive WCRT analysis and control-flow sensitive WCRE analysis.
This benchmark consists of one thread that performs, with an activated device, a computation (1 155)
and an ISR that deactivates the device with an minimal IAT of 100 000 cycles.

For the WCRT analysis, which is the base for the always-on approach, we accumulate theWCRT vs.
WCRE execution time of the low-priority thread and add the WCET of the ISR once. However, if we consider

the semantic impact of the interrupt on the energy consumption, we come to the conclusion that
the interrupt must not trigger on the WCRE path. Therefore, the response time in the WCRE case is,
with 1155 cycles, shorter than the WCRT with its 1377 cycles.

HOLD: Ich denke ich bringe hier die Scalability Ergebnisse nicht. Am Ende ist SysWCEC hier nur das extra des Kapitels.
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4.7 Summary

The worst-case response time (WCRT) analysis is a worst-case analysis that estimates an upper bound
for the expenditure of a consumable good (i.e., time) by the whole RTCS when executing a task. The
state-of-the-art method is inherently compositional: we calculate WCETs for each task pessimistically
and accumulate them pessimistically according to their mutual preemptions, blockades, interruptions,
and dependencies. Thereby, this composition accumulates not only times but also pessimism as
we have to assume the worst-case scenario in every step, even if the concrete combination is an
infeasible worst-case path in the actual system. With the compositional approach, we cannot, by its
very principle, express constraints about the worst-case path if the condition spans multiple threads;
the RTOS is an insurmountable border between threads.

SysWCET overcomes this limitation of compositional analyses and provides a method to describe
the WCRT estimation as a single, integrated problem formulation. In this integrated formulation,
which covers the RTOS, all threads, all ISRs, and their interaction, we can formulate system-wide
constraints, avoid more infeasible paths in the analysis, and get tighter WCRT bounds. In addition,
SysWCET performs the response-time analysis on the implementation level, after the RTCS is mapped
to OS primitives, and, therefore, has a more realistic picture of the RTCS than an analysis that is
performed beforehand.

SysWCET starts with the SSTG interaction model and combines it with the machine code of
application and RTOS in a single, layered integer linear programming (ILP) with the implicit path-
enumeration technique (IPET): In the state layer, ILP variables capture how often the system visits
an SSTG state in the worst-case scenario; it captures the system semantic, interactions, and all
interactions between RTOS and application. The glue layer derives execution count for individual
ABB regions of application and kernel code and reduces over estimations by handling of interrupt–
resume loops. The machine-layer consists of IPET-ILP fragments that cover the implementation of
ABBs and all non–system-relevant functions that are only indirectly referenced by the SSTG.

With SysWCEC, we could show that the interaction-aware SysWCET approach is also beneficial
for other consumable goods, in this case energy, that is expended during the system’s execution.
SysWCEC provides tight upper bounds for the worst-case response energy (WCRE) of threads even if
they execute within RTCS that include power-hungry but switchable peripheral devices. Thereby,
SysWCEC out performs the always-on approach to WCRE analysis and exhibits a fine-grained,
control-flow sensitive, interaction- and power-state aware, picture on the energy consumption. We
achieve this detailed view by lifting the current power-state configuration to the system-state level
and by propagating it all the way down to the SysWCET-based WCRE analysis.

Besides the high automation grade of the WCRT and WCRE calculation, I could also show that
the SysWCET approach is able to provide tighter bounds on response times and energy consumption.
For the WCRT, SysWCET provides up to 10.5 percent tighter bound than the compositional approach
for the i4Copter. For the WCRE, SysWCEC even achieved up to 81.7 percent tighter bounds than the
always-on approach and could correctly benefit from interaction patterns that were intentionally
included to preserve energy.

With this chapter, I could show that a control-flow sensitive view on the interaction in a whole
system is possible (RQ1) and beneficial. We saw, furthermore, that the segregation of worst-case
analyses along the thread boundaries leads to overly pessimistic estimations, since the flow of
information and constraints about the actual usage patterns is stopped at these boundaries (RQ2).
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6
Semi-Extended Tasks

Stack as a Shared Resource

The real problem is that programmers have spent far too much time worrying
about efficiency in the wrong places and at the wrong times; premature
optimization is the root of all evil (or at least most of it) in programming.

Computer Programming as an Art, 1974, DONALD KNUTH

HOLD: Something with Res Publica?

In the first part of this thesis, I used the static interaction analysis to investigate on the properties
of a eventually deployed RTCS. In this and the next chapter, I will constructively improve system
properties, namely stack consumption and reschedule overhead, in a post-mapping optimization
step that is only possible with the proposed whole-system view on the interaction analysis.

With the in-depth knowledge about the thread activation and preemption patterns, I propose the
fine-grained sharing of statically-allocated stack space among different threads. Traditionally, stack
space is considered as the private resource of an OS thread. With the proposed fine-grained stack
sharing, I break up this monolithic view and expose the potentials to reduce the overall memory
requirement of the RTCS. Thereby, the proposed semi-extended task (SET) approach leaves the
application logic in place and does not limit the flexibility of the system; it only exploits inefficiencies
in the resource usage that originate from the segregation of the real-time application into multiple
threads.
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6.1 Memory Consumption of Statically-Allocated Stacks

6.1 Memory Consumption of Statically-Allocated Stacks

Besides processing time on the CPU, volatile memory is the most important resource of a computing
platform as it holds the program state and intermediate computation results. Its size significantly
defines the upper limit for the application complexity, especially if a system, like many embedded
real-time systems [Bro06], has no modifiable background storage to hold the ever-changing data.
Therefore, the RAM requirement of a RTA is an essential non-functional property.

Looking at a system’s RAM requirement from the perspective of the purchase department another
aspect arises for deeply embedded systems: RAM is expensive and its price does not scale linearly. In
Table 6.1, we see the price development for the same processor core if only RAM and the non-volatile
flash memory is enlarged. First, we see that the amount of flash memory, which is used on this
Harvard architecture to store the code, is available in much larger quantities than the on-chip SRAM
cells; an observation that is in opposition to the ratios in the desktop and server market (i.e., SSD
storage vs. DDR RAM). Second, we see that RAM comes, for this MCU series, only in power-of-two
quantities, which results in a staircase-shaped cost function for the memory demand. In a nutshell,
the additional 8193th byte costs about 12 cents per sold unit, while the added 10000th byte is
already paid for. Vice versa, also small RAM savings can result in large cost savings if we thereby
can purchase the next smaller MCU.

The memory demand of an application can be divided into two classes of allocations: The
static allocations (e.g., global variables) have the same life time as the program itself and must
be kept reserved at all times for the memory requester. For the static RTCS, where the RTA is the
only workload, these allocations directly reduce the amount of available memory. As these static
allocations block whole areas of RAM, we can downright speak of memory consumption instead of memory

consumptionmemory demand.
On the other hand, dynamic allocations live shorter (e.g., for a single job execution) as they are

requested from and returned to the dynamic allocator at run time (i.e., malloc() and free()). Here,
the maximal memory consumption of the system can be smaller than the sum of all allocations. If
their life times of two allocations do not overlap, the allocator can hand out the returned memory a
second time. For example, if two mutual-exclusive tasks allocate and return 20 and 25 bytes, the
worst-case memory demand is not 45 bytes but 25 bytes.

Part Flash RAM Price

ATXMEGA32C3 32 KiB 4 KiB 3.21360 USD
ATXMEGA64C3 64 KiB 4 KiB 3.95522 USD
ATXMEGA128C3 128 KiB 8 KiB 4.07883 USD
ATXMEGA192C3 192 KiB 16 KiB 4.94401 USD
ATXMEGA256C3 256 KiB 16 KiB 4.93371 USD
ATXMEGA384C3 384 KiB 32 KiB 6.05640 USD

Table 6.1 – Market Prices of AVR ATXmega C3 Series. Price and resource comparison of different
ATXmega 8-bit processors from the same series in the same packaging (64TQFP) with the same
feature set. The prices were obtained on 20th February 2019 from https://www.digikey.com
for a minimum purchase quantity of 1000 pieces.
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One driver of the memory demand, especially of the static memory consumption, in event-
triggered systems is the execution stack. First invented by Turing in 1946 [Car93],8 the execution, or
function call, stack allows the recursive invocation of subroutines. For this, the stack data structure
provides push() and pop() primitives that store and retrieve data in last-in–first-out manner. In
its simplest form, the execution stack holds return addresses, which a function caller pushes onto
the stack before he invokes the subroutine. After the callee function finished, it pops the top-most
return address from the stack and jumps to this program address.

In most run-time environments, the stack does not only hold the return address for each function
invocation but also other short-lived data, like local variables and arguments, that are only required
during the function execution. This data bundle is the function-call frame, or simply call frame, andfunction-call

frame it is pushed onto the stack at the beginning of the function and eventually popped with the return.
Since all call-frame data access are done relative to the top–of-stack pointer, or another derived
pointer (e.g., base pointer), multiple invocations of the same subroutine can exist at the same time.
Furthermore, with this dynamic allocation strategy, we do not have to allocate space statically for
every function-local variable but only reserved it on the stack for the function-call run time.

Thread#1 Thread#2

Function-Call Frame

Thread-Local

Stack Space
Stack PointerScheduler

Figure 6.1 – Private Thread Stacks. If each thread has its own private stack space, where the
function-call frames (colored boxes) are dynamically allocated, the scheduler-induced context
switch can happen at any time.

In the context of most operating systems, execution stacks are closely connected to threads, and
often every thread is equipped with its own private stack. Even for systems that initially favored a
stack-less and event-driven programming model, like Contiki [DGV04] or TinyOS[Lev+05], optional
thread packages were proposed [Dun+06; Klu+09]. With thread-owned stacks (see Figure 6.1), we
can save and restore the list of currently active call frames by including the stack pointer into the
thread context that is exchanged by the dispatcher. As the memory of a private stack is exclusively
owned by one thread, we need no additional synchronization measures and the OS can switch,
without any restriction and at any time, between threads and their corresponding stacks.

For static real-time systems, private execution stacks have a significant disadvantage: memory
consumption. Since the call-frame allocation is done by the thread without help of the RTOS, we
have to reserve enough stack space such that all simultaneously-existing call frames fit in and no
stack overflows occurs. As the other RTOS structures are already allocated statically, it is nearby
allocate the stack spaces also statically and dimension it for the thread’s WCSC to avoid a heap
allocator. While stack-space memory consumption was also observed in general-purpose operating
systems, like Mach 3[Dra+91], the restricted nature of many deeply embedded execution platforms
(see Table 6.1) makes the problem more urgent.

8The achievement of Turing was forgotten until the 1970s because the ACE report was kept secret by the British government.
However, his proposal of the BURY and UNBURY instruction predates the proposal (1955) and the patent [BS57] of Bauer
and Samelson, who proposed the stack principle for the evaluation of arithmetic expressions. In 1988, Bauer was awarded
with the IEEE Computer Pioneer Award “for computer stacks” and his other contributions, like coining the term “software
engineering” [Awa88].
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However, the regimented nature of RTCS opens a possibility for stack-space reduction that is
unknown in the desktop world. Not every thread can preempt every other thread at any given point
in time, but the priorities, periods, and inter-thread dependencies constraint the possible preemption
patterns. From these real-time properties, we can obtain knowledge about threads that never execute
at the same time and associate the same stack space to both; allocating only the maximum (instead
of the sum) statically. While the preemption constraints point out the potential for stack sharing, we stack sharing
also require a mechanism that distributes the same stack space to several threads without provoking
memory corruptions.

Basic-Task Stack

TOS_BTS

Thread#1

Thread#2
Scheduler

Figure 6.2 – Basic Task Stack. Since basic tasks cannot wait passively, they can only be forcefully
preempted, and we can allocate them onto the same stack. Preempted threads (#1)that are
closer to the bottom-of-stack will only resume after the preempting threads (#2) complete.

The OSEK world already provides such a mechanism that is tightly coupled with the real-time
scheduling: basic tasks. Unlike extended tasks, basic tasks (BTs) (see Section 2.1.3) are not allowed
to suspend themselves; they cannot wait passively for an event. Therefore, a started basic task
executes until its self-termination and only the preemption by another thread can pause this run–
to–completion. This property allows us to co-locate all basic tasks on the same shared stack, the
basic-task stack (BTS) (see Figure 6.2). There, the call frames of all basic tasks are tightly stacked onto basic-task

stackeach other and a newly started basic task begins its call-frame allocations where the last preempted
basic task allocated its last call frame (TOS_BTS). Due to the no-waiting restriction and the priority
structure, only the top-most thread is actually runnable; it (thread #2) must terminate, before the
buried threads (thread #1) can continue.

The BTS mechanism is closely connected to and only possible due to the prohibition of self-
suspension in BTs. Let us assume the following counterexample situation in Figure 6.2: Thread
#1 has a high priority, waits for an event, and is removed from the ready list. We dispatch thread
#2, which has a low priority, on top of thread #1. If now thread #1 wakes up and gets scheduled
again, as it has the highest priority in the system, it can start to allocate more call frames, which will
overflow into the thread-#2 stack area and provoke a memory corruption. In a nutshell, waking
up a thread on the BTS must not happen if its frames are currently buried under another thread’s
frames. This is achieved by forbidding WaitEvent() system calls in basic tasks.

However, this prohibition restricts the expressive freedom of the developer. Since only whole
threads can be marked as BT and transferred to the BTS, we can either have the potential savings of
the BTS mechanism or the possibility to wait passively in his threads.

With semi-extended tasks (SETs), I provide a mechanism that allows for the fine-grained transfer of
call frames onto the BTS. Thereby, threads can wait at some point passively on their own private stack,
while other parts of its execution are relocated onto the BTS. Furthermore, I provide the necessary
fine-grained WCSC analysis, as well as an optimization strategy to shrink the static stack-space
allocations for private and shared stack(s).
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6.2 Stack-Space Saving in the Literature

Before I describe the SET approach to stack sharing between blocking threads, I want to discuss other
proposals that aimed for a reduction of the static stack-space consumption. Thereby, all proposals
are based on the observation that the maximum of the system-wide call-frame allocations is often
lower than the sum of the WCSC of each thread (RQ2). The related work can be categorized into
three classes: (1) better mechanisms for call-frame allocation. (2) optimized real-time parameters
to exploit the shared-stack approach. (3) more precise WCSC analysis in real-time systems.

Taking a step back, we can describe a statically-allocated stack space as a bump-pointer allocator,Call-Frame
Allocation with the stack pointer as the bumping pointer. On every call-frame allocation, we move the stack

pointer forward9; on every function return, we move it backward. While this kind of allocation is
efficient and easy to implement, it requires a continuous area of (virtual) memory. For the first class
of related work, other call-frame allocation strategies are proposed that co-locate frames of different
threads to achieve a more dense packing.

Early examples of non-linear stacks and heap-allocated frames can be found in LISP run-time
environments [Ste77; BW73]. In order to provide continuations, these systems had to allocate call
frames that captured the local variables and lived longer than the initial call. Since one calling
function can generate several continuations, which all link to the functions’ call frame, a tree-shaped
stack structure, the so called spaghetti stack, arises.

For the MESA system [Lam82], call frames from different threads were first allocated from a
common heap to provide for a compact storage. Each call frame is linked to its dynamic predecessor,
forming a list of call frames for each thread. This mechanism was also applied to wireless sensor
nodes [Yi+07], which suffer from strict memory constraints. However, for the memory-saving aspect,
this per-call approach has the downside that the heap gets quickly fragmented as frame sizes vary
and frames are often short lived [Lam82; Ste77].

Besides fragmentation, per-call mechanisms also impose a run-time overhead for every function
call. Therefore, the idea to dynamically allocate larger chunks of memory, which can hold multiple
frames, came up. Grunwald and Neves [GN96] statically analyze the function-call graph to find
regions with a bounded stack consumption. A generated “allocation stub” requests the required
memory from specialized fixed-size allocator at the region entrance and no run-time checks are
required. A more reactive version of this principle was proposed by Behren et al. [Beh+03], which
also segmented the call graph into regions and calculated an upper limit for their stack consumption.
However, instead of proactively allocating the exact amount of memory, larger chunks were allocated
and the compiler inserts checks at every segment entrance that enough space is available in the
current chunk.

A more hybrid approach is MTSS [MSB08], which was proposed particularly for embedded
systems. Here, every thread starts in its private static stack-space and run-time checks detect possible
stack overflows. In such situations, stack space is stolen in fix-sized quantities from the unused
memory reservation of other threads. Mauroner and Baunach [MB17] brings the reactive stack-space
allocation to the hardware level. An OS-aware memory-management unit (MMU) provides a linear
stack-space virtualization that transparently grows and shrinks the amount of used physical pages
according to the task’s stack pointer.

Compared to the SET mechanism, the mentioned dynamic call-frame allocation mechanisms
pay continuously for run-time checks for the memory allocation. SET, on the other hand, transfers
the control flow at neuralgic points unconditionally, often with a single instruction, onto the shared
stack.

9On most architectures, the execution stack grows from the large addresses to the small address; from top to bottom.
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The second class of related work acts in the RT domain as it adapts the real-time parameters to Real-Time
Parametersoptimize the stack consumption while keeping the system schedulable. These proposals assume a

basic-task–like model with non-blocking threads that run on a single shared stack.
Wang and Saksena [WS99] introduced preemption-threshold scheduling as a modification to

fixed-priority scheduling where each thread has two static priorities. With the preemption priority,
a task preempts other tasks; With the preemption-threshold priority, which is higher than the
preemption priority, a task defends itself against being preempted. A reschedule only happens if a
readied task has a higher preemption priority than the current preemption threshold. By restricting
preemptions, preemption-threshold scheduling (PTS) results in more tasks that are mutual exclusive,
which can be exploited in the WCSC analysis. For example, all tasks that share the same threshold
can never preempt each other.

Furthermore, these thresholds do not only decrease the WCSC on the BTS, but they can, if
chosen appropriately, increase the schedulability of the system [GD07]. For partitioned and global
fixed-priority systems, Wang et al. [Wan+16] and Wang, Gu, and Zeng [WGZ16] proposed an
ILP-based strategy for choosing optimal thresholds that minimize the WCSC but still result in
schedulable systems. However, all PTS-based proposals view the task as the indivisible source of
stack consumption.

A more fine-grained approach was taken by Baker [Bak91], who extended the PCP [SRL90a]
for resource acquisition to the SRP. As already explained in Section 2.1.3 for OSEK resources, the
priority of a resource-requesting task is immediately raised to the ceiling priority of the resource,
which prevents any preemption by other tasks that can also acquire the resource. Thereby, we can
safely use mutual-exclusive shared resources on the BTS as the GetResource() system call can
never lead to a self-suspension. As a side effect, SRP locking also reduces the WCSC on the BTS as it
restricts preemptions as long as the lock is held. Since the SRP ceiling priority and the PTS thresholds
work so similar, Gai, Lipari, and Di Natale [GLD01] could show that preemption thresholds are a
special case of the SRP. For the reduction, all tasks with the same preemption threshold share an
implicit resource, which is taken as long as the task is dispatched for execution.

Yao and Buttazzo [YB10] this equivalence to implement preemption thresholds for multiple
AUTOSAR runnables, which are mapped sequentially into the same thread. For this, the assigned
threshold was enforced by generated SRP requests that enclosed the runnable’s code. Zeng, Di Natale,
and Zhu [ZDZ14] used the same SRP-based mechanism and proposed a method to minimize the
stack consumption by modifying the runnable-to-thread mapping. In both cases, the inner structure
of the thread implementation was considered, but only in a much simpler form than the complete
call graph.

Compared to these proposals, I assume the real-time parameters to be fixed and only exploit
the preemption constraints that are induced by these RT policies. However, unlike the RT-domain
proposal, SET supports (partial) stack sharing among self-suspending tasks and considers the task
micro structure in terms of its call graph.

The third class of related work complements the constructive stack-space saving methods in the WCSC
AnalysisOS and RT domain by providing tight(er) WCSC analyses. With the WCSC analysis, we calculate an

estimated upper bound for combined size of the dynamic call-frame allocations on a given stack.
If we allocate the WCSC as the stack space, we have statically ensured that no stack overflow can
occur at run time. Therefore, tighter WCSC estimates that are closer to the actual WCSC directly
translate into a reduced memory consumption of our system.

The commercial StackAnalyzer [Abs19] tool is developed and sold by AbsInt, and it calculates
the WCSC for a regular program (i.e., no context switches). For this, it starts by analyzing the binary
code before it derives an upper bound for the stack consumption of each function. In the extracted
call-graph it searches for the worst-case path that leads to the WCSC for a given task. This per-task
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information can, for example, be combined compositionally into the WCSC on the BTS by the tooling
that surrounds the commercial RTA-OSEK [Ltd07, cha. 18-2]. However, for both industrial tool
chains, the cited sources are not precise enough to determine the employed method to determine
the WCSC.

On the academical side, Hänninen et al. [Hän+06] presented a WCSC analysis for hybrid (time-
and event-triggered) systems that use a shared stack. For this, they incorporated information about
task timings (i.e., periods, activation offsets) to get an approximate but safe upper bound on the
stack consumption. Later [Boh+08], they extended their approach with an exact analysis that uses
a branch–and–bound analysis. However, both analysis consider the stack consumption only on the
level of tasks as they neglect the function level.

For interrupt-driven programs, which only have IRQ-induced preemption and no RTOS-mediated
interaction, several attempts were made to deduce a WCSC directly from the binary code. Brylow
et.al [BDP01; Bry03] used an model-checking algorithm for push-down systems, where each explored
system state consisted of the program counter and the interrupt mask of an Z86. Regehr, Reid,
and Webb [RRW05a] proposed a similar method based on the abstract interpretation of program
for an AVR 8-bit MCU, which can also handle dynamically computed interrupt masks and not
only constant immediate values. From a context-sensitive data-flow analysis, which calculates the
interrupt mask for every point in the system, they construct an interrupt-preemption graph with
the stack consumption at every preemption edge. Chatterjee et al. [Cha+03] showed that the exact
stack-bound of interrupt-driven programs with arbitrary-deep nested ISRs and interrupt masks is
PSACE-hard and we can reduce QSAT onto the construction of the interrupt-preemption graph.

The WCSC analysis that accompanies the presented SET approach differs in several aspects from
previous methods as it considers the stack consumption on the function-level but in the system-wide
context of a full-featured RTOS model. Thereby, the analysis supports complex call graphs with
recursive functions, as well as additional function-level preemption constraints that are supplied by
the interaction analysis.

6.3 Hybrid Task Execution on Two Stacks

The basic idea behind semi-extended tasks (SETs) is a hybrid approach to call-frame allocation and
stack-space reservation that allows a blocking thread to utilize the shared stack space. For all call
frames that will never be on the stack when the thread enters the waiting state, we allocate frames
on the BTS. For the other frames, when we are unsure whether the thread can sleep during their
existence, we use a private stack-space reservation. By this hybrid allocation principle, a SET can
never enter the waiting state if one of its call frames is on the BTS. This avoids the situation where a
preempted thread wakes up while one of its call frames is buried in the middle of the BTS.

For this hybrid allocation scheme, we have to decide for ever frame whether it is non-waiting
and can be placed on the BTS, or if it is waiting and has to be put on the private stack. It is clear
that a function that issues a WaitEvent() system call itself must allocate its frame from the private
reservoir. However, waiting can happen also indirectly, if a called function or any function deeper
down in the calling hierarchy issues a WaitEvent(). Therefore, the call frame allocator must predict
whether the function itself or any of its child functions will block. However, this prediction cannot
be done precisely for an arbitrary function, as this would solve the halting problem.

Therefore, I use an over-approximation and decide statically, according to the call graph, whether
a given function can, directly or indirectly, issue a blocking system call. Thereby, I identify regions in
the call graph that can never provoke a waiting state. For the functions in these regions, we can surely
allocate their call frames from the BTS. Figure 6.3 shows this operation principle schematically.
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Basic-Task Stack SET#2

BT#1

SET#2

BT#3

Scheduler

Stack Switch

Figure 6.3 – Basic Principle of Semi-Extended Tasks. Each SET starts on its own private stack
space, which it can use for waiting and waking. For those code sections that surely never wait,
the SET transfers its execution onto the shared stack and draws its call-frame allocations from
the common stack-space reservation.

The SET (#2) starts its execution on the private stack and allocates frames there until it enters a
non-waiting call-graph region. Then we transfer the control-flow to the BTS and allocate frames
there. In this state, SET #2 can be preempted by a basic task as this preemption can only be the
result of BT #3 having a higher priority. As BT #3 is also not allowed to wait, it runs to its completion
and removes its frames form the BTS before SET #2 is scheduled again. If the non-waiting region is
left by the destruction of the last frame on the BTS, SET #2 returns its execution back to its private
stack, where it is able to issue blocking system calls.

For this basic operation principle, we have to solve three problems that I will answer in the next
three sections: (1) How can a thread switch between stacks efficiently? (2) What amount of memory
must we reserve for the private and for the shared stack space? (3) Which functions should change
the stack for the overall WCSC to become minimal?

6.3.1 A Mechanism for Intra-Thread Stack Switch

In the following, I will describe the stack-switch mechanism, as well as the required compiler and
RTOS modifications that are necessary to implement semi-extended tasks efficiently. For understand-
ing SET’s light-weight stack-switch mechanism, we must take a closer look at the technical details of
the call-frame allocation [Aho+07, cha. 7.2]. For this, I will discuss, exemplary, the frame layout
that Linux programs that use the System-V application binary interface [The97, cha. 3.9]. While
calling conventions and compilers might make different decisions, we do not loose generality as
used the concepts are similar on most platforms.

Unlike heap allocations, the call-frame allocation is not done at one point in time, but the
responsibilities are split between the caller and the called function Figure 6.4. First, the caller pushes
the arguments on the stack (line 3-4) and invokes the call instruction to transfer the control flow to
the called function. There, the function prologue performs the rest of the frame allocation: first, we
save the ebp register as a callee-saved register (line 11) as we use it to hold the frame pointer for
our call frame. From the stack pointer, which always points to the top-of-stack address, we derive
the frame pointer (line 12) and use it in the function body to access the passed arguments. After
the new frame pointer is in place, the function allocates slots for the local variables (line 13) and
register-spill slots if necessary. In the epilogue, we use the frame pointer pop the callee-created stack
frame with two instructions (line 20-21).

In the standard call frame, the frame pointer seems unnecessary as the frame is of fixed size and
we can address every stack slot indirectly, with constant offsets, via the stack pointer. Therefore,
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1 entry:
2 ... ; Push arguments in
3 push b ; reverse order for
4 push a ; variadic functions
5 call foo ; Transfer control flow
6 add esp, 8 ; Cleanup arguments
7 ...
8

9 foo:
10 ;; Function - Prologue
11 push ebp ; Save old framepointer
12 mov ebp, esp ; Load new framepointer
13 sub esp, 16 ; Allocate local variables
14

15 ;; Function Body
16 ;; - Parameters and local variables can be
17 ;; accessed register-indirect via esp or ebp
18

19 ;; Function Epilogue
20 mov esp, ebp ; Restore old stackpointer
21 pop ebp ; Restore old framepointer
22 ret

(a) IA-32 Disassembly of f1()

entry()

arg 2

arg 1

return address

old ebp

local 1

local 2

local 3

local 4

Pushed by Caller

Pushed by Callee

Call Frame for

foo(a,b)
Frame Pointer ebp

Stack Pointer esp

-0[ebp]

-4[ebp]

-8[ebp]

-12[ebp]

-0[esp]

-4[esp]

-8[esp]

-12[esp]

Thread Stack

(b) Stack Allocations

Figure 6.4 – Regular Intel IA-32 Call Frame. The call frame allocation and deallocation is split
between caller and callee. The additional frame pointer allows for efficient stack unwinding
and variable-sized arrays on the stack.

compilers often provide the optimization to avoid the usage of a frame pointer10, which frees the ebp
register as another general purpose register. However, functions that use dynamic stack allocations
(i.e., alloca() or C99 variable-sized arrays) always require a frame pointer, since the distance
between parameters and local variables is not statically known.

Coming back to SETs, we want to switch to the BTS in stack-switch functions, which are staticallystack-switch
functions marked by the system generator. For this, we modify the compiler to produce a slightly different

function prologue (see Figure 6.5). Thereby, we split the call frame at the frame pointer into two
parts and transfer everything between ebp and esp onto the BTS.

FIXME: Das Betriebssystem muss für einen SET auch prüfen, ob wir gerade auf dem BT stack sind.

In the function prologue, after the new frame pointer is in place, we overwrite the stack-pointer
register with the value of the TOS_BTS variable (Figure 6.5, line 4). As we already discussed in
Section 6.1, an OSEK-compatible RTOS already requires this internal TOS_BTS variable, which always
points at the end of the last preempted thread on the BTS. The RTOS uses it to indicate where newly
started basic tasks should begin their frame allocations. For SETs, we have to modify the RTOS
to update the TOS_BTS variable, if a SET gets preempted while it currently executes on the BTS.
Furthermore, we have to expose the TOS_BTS variable as a read-only variable to the application
such that it can be used it in the switch instruction. Afterwards, all subsequent stack allocations
(line 5), draw from the BTS space instead of the private stack; even the invoked child functions
draw from the BTS without any further modification.

In addition to the single instruction in the function prologue, we also have to modify the
compiler’s address generation for parameters and function-local variables. As the stack frame is no
longer a continuous memory area, we must enforce that the arguments are only addressed via the
frame pointer and local variables only via the stack pointer. Luckily, compilers already must support
such constraints since some functions (i.e., with some SIMD instructions) require additional stack

10GCC/CLang -fomit-frame-pointer
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1 ;; Function - Prologue
2 push ebp ; Save old framepointer
3 mov ebp, esp ; Load new framepointer
4 mov esp, [TOS_BTS] ; Switch to shared stack
5 sub esp, 16 ; Allocate local variables
6

7 ;; Function Body
8 ;; - Access local variables via esp
9 ;; - Access parameters via ebp

10 ;; - Access local variable-sized arrays (alloca)
11 ;; via a third stack pointer esi, if needed
12

13 ;; Function Epilogue
14 mov esp, ebp ; Restore old stackpointer
15 pop ebp ; Restore old framepointer
16 ret

(a) IA-32 Disassembly of f1()

e1()

foo()

local 1

local 2

local 3

local 4

bar()

esp

T
O
S
_
B
T
S

e2()

arg 2

arg 1

return address
old ebp

ebp
-0[ebp]

-4[ebp]

-8[ebp]

-12[ebp]

-0[esp]

-4[esp]

-8[esp]

-12[esp]

mov esp,[TOS_BTS]

f
1
(
a
,
b
)

f
1
(
a
,
b
)

Basic Task
e1() → foo()

Semi-Extended Task
e2() → f1() → bar()

CPU Register

Basic-Task Stack Private Stack

(b) Stack Allocations

Figure 6.5 – Intra-Thread Stack Switch Mechanism. f1() switches from the private stack to the
shared stack by loading TOS_BTS into esp. The stack diagram shows a situation where the SET
preempted the basic task and switched with f1() to the BTS. Adapted from [DL18].

alignment, which results in gaps of unknown size below the frame pointer. We simply trigger these
constraints for switch functions.

The call-frame split at the frame pointer also gives us the benefit that the function epilogue (line
14-15) does not have to be changed. With the restoration of the stack pointer from the frame-pointer
register (line 14), we implicitly switch back to the private stack.

With these modifications, we can switch, at given functions, from the private stack space to the
BTS. However, the implementation has a limitation if more than one function is marked as a switch
function. If we have already switch to the BTS, the invocation of a switch function would corrupt
the stack as the TOS_BTS is only updated when the thread gets preempted.

6.3.2 Fine-Grained Worst Case Stack Consumption Analysis

The co-location of multiple threads on the same stack does not necessarily decrease the combined
stack-space demand. For example, if we execute an set of fully independent sporadic tasks, every
thread can become ready at any given point in time. Without further knowledge, we have to assume
that the worst case manifests: a preemption chain from the lowest- to the highest-priority thread
where every thread gets preempted in the most stack-intense call chain. Thereby, the stack must be
as large as the sum of the maximal consumption of each thread.

The only chance for shrinking the shared stack-space allocation is to find mutual-exclusive call
frames, which can never exist at the same time, and account only for the larger one. For finding a safe
upper bound, we have to extract static constraints of mutual exclusiveness. Constraint sources can be
flow-insensitive scheduling mechanisms like preemption-threshold scheduling (PTS) or flow-sensitive
directed dependencies, like they stem from a thread activation that happens after a function call.
But, wherever the constraints stem from and how we extract them, we have to use a WCSC analysis
that can use them to give tighter bounds.

For understanding the influence of such constraints, Figure 6.6 shows the BTS consumption for
the same system of two threads under different preemption constraints. While both threads have
their own call graph, they both invoke the shared function S(), which can result in two active call
frames for S(), one in each thread context. Furthermore, T2 calls the recursive function f2() for
which we know the maximal recursion depth. Without further constraints (Figure 6.6a), the worst
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Figure 6.6 – Stack Consumption and Preemption Constraints. The baseline WCSC can only
become smaller if additional preemption constraints known and used in the analysis. Each
function in the call graph is annotated with its maximal stack demand and the worst-case
preemption and call chain is indicated in red. Adapted from [DL18].

case manifests if we call S() in T1 and invoke the recursive function in T2 and we have to allocate
130 bytes of BTS space.

If we know that T1 can never be preempted by T2 (Figure 6.6b), their stack consumption becomes
mutual exclusive and we end up with a much smaller WCSC of 70 bytes. However, such preemption
constraint can not only arise on the thread–thread level but also on the function–thread level. In
Figure 6.6c, we only know that T2 can preempt T1 in e1() but never in S() or f1(); a constraint
that can arise from the usage of SRP locks. Furthermore, if we make T2 a SETs with S()/S() as
switch functions, the e2() draws its stack allocation from the private stack.

From the examples, for our WCSC analysis to become general applicable and tight in its bounds,
we must support: arbitrary call-graph structures (with recursion), thread-level preemption constraints,
function-level preemption constraints, and information about the SET configuration. As no stack-
analysis technique from the literature supports such a fine-grained set of constraints, I had to develop
my own WCSC analysis.

For this, we can understand the WCSC problem on a shared stack as a problem of finding
the longest path in a weighted two-layer graph: we put the thread’s call-graphs with duplicated
function nodes into the nodes of a thread–thread preemption graph; each function node has its
maximal call-frame size as weight. On this graph, we search for that thread-thread–preemption and
function–function–call path that has the maximal stack demand. Similar to the SysWCET approach
(Chapter 4), I use the IPET to formulate this WCSC problem as an ILP.
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We start out by introducing a count variable ‖Ti‖ for each possible thread in the BTS. Since even
the multiple activation support of OSEK allows only for one active task incarnation, the range of
these variables can be restricted to [0, 1]. Furthermore, I avoid to model explicit preemption edges
between threads, but only constraint thread activations and preemptions implicitly. For example,
if the thread {Tl , . . . , Tm} share an implicit SRP resource, which is equivalent to having the same
preemption threshold, we restrict their added thread counts to be no larger than 1:

m
∑

i=l

‖Ti‖ ≤ 1

For each thread, we collect all functions Fi that are reachable from thread’s Ti entry function
fe; all leaf functions, which invoke no further functions, are recorded in the set FL,i . We introduce
an integer-typed count variable ‖ f ‖Ti , scoped and prefixed with the surrounding thread, for each
function in the call graph. For each caller-callee relationship in the call-graph, we add an call-edge
count variable ‖ fs → ft‖Ti and for the entry function an artifical call edge ‖E → fe‖Ti With these
variables and the IPET, we add structural ILP constraint to ensure that a correct path through the
call graph is taken. Each function is called as often as the incoming call edges are taken (except for
the entry function):

‖ fe‖Ti =
∑

fs∈caller( f )

‖ fs → fe‖Ti + ‖E→ f ‖Ti

∀ f ∈ Fi \ { fe} : ‖ f ‖Ti =
∑

fs∈caller( f )

‖ fs → f ‖Ti

Since we search for one path through the call graph, every function invocation can lead to at most
one additional invocation. However, since constraints could forbid the invocation of leaf functions
we have to use an less-equal constraint here to avoid situations were the costliest sub-graph is not
considered because its leaf-functions are forbidden. This could lead to an underestimation of the
stack consumption. Therefore, the outgoing edges can, in sum, be visited at most as often as the
calling function:

∀ f ∈ Fi \ FL,i :
∑

ft∈callee( f )

‖ f → ft‖Ti ≤ ‖ f ‖Ti

To complete the structural constraints, we have to add constraints about recursion limits like we
would do it for a WCET ILP. These recursion limits have to be supplied by the developer. At last, we
complete the basic ILP problem by adding the stack usage as costs to the function variables and
formulate an maximization objective.

max

 

∑

Ti

∑

f ∈Fi

‖ f ‖Ti · stackusage( f )

!

Hereby, I assume that a maximal stack usage is given for each function. This information can
often be supplied by the compiler, who anyway defines a function’s stack layout. The only difficulty
arises from functions with dynamic stack allocations, which might lead from the use of variable-
sized stack-allocated arrays or alloca(). For these functions, we use the maximal possible stack
consumption, which has to be given by the developer if we cannot deduce it otherwise.

It is also in the objective function where we handle the influence of SETs: Since we want to
give the WCSC for a system where we have already decided on the switch functions, we can surely
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identify, with a search from the thread entry to the switch functions, all functions that will never
contribute to the shared stack consumption. For these functions, which surely allocate their frames
from the private stack, we set the stackusage(f) to zero. Thereby, these functions can still play
their role in constraining the preemption and call chain, but they do not contribute to the WCSC.

On the so generated ILP, we add further constraints that capture the coarse- and fine-grained
preemption information. While this information can stem directly from the real-time parameters (like
with the implicit SRP resource), we can also extract preemption information from the interaction
analysis. Since we are only interested in the possible preemptions on the thread–thread and function–
thread level, the less fine-grained GCFG interaction model and the less costly (and polynomial) SSF
analysis (Section 3.4.2) is sufficient.

For extracting preemption constraints, we comprehend the GCFG nodes as triples of thread,
function, and executed ABB: (Ti , f , ABB). For each possible (Ti , f ) pair, we perform a depth-first
search on the GCFG to find the setof all threads that cannot be reached by preemption in f . For this
non-preemption set, we start with a full set of all threads and continuously thin out all threads that
are reachable on non-resume GCFG edges. For this, we remove all visited Tx from the thread set
until we stop the search at nodes that resume back to Ti:

(Ti , f ,∗)

0...∗
︷ ︸︸ ︷

→ (Tx ,∗,∗) → (T j ,∗,∗) Tx 6= Ti , T j 6= Ti

By this search, we do not only find all direct preemptions but also all indirect preemptions where
a third thread T j can only become active after some intermediate thread Tx was the first preemptor
of Ti . From the resulting non-preemption sets, we can formulate different preemption constraints: If
a thread T j is in all non-preemption sets (Ti ,∗) of a thread, then we have found a coarse-grained
preemption constraint that forbids all preemptions from T j to Ti . If the thread T j is only in some
non-preemption sets, then we have found a fine-grained preemption constraint, where a thread can
only be preempted in some functions.

Since the GCFG contains the complete interaction between application and RTOS scheduling,
we cover the influence of real-time parameters like the usage of implicit SRP resource, preemption
thresholds, and non-preemptable threads. However, we also get constraints from code-level constructs
like explicit SRP resource allocations, interrupt blockades, or the sequential activation of threads.
Thereby, we consider the directed and undirected dependencies from the RT domain in exactly that
fashion as they influence the actual implementation.

From the GCFG, we got constraints about impossible preemptions ( f → T j , Ti → T j) that we
want to introduce into the WCSC ILP in order to tighten up the stack-consumption estimation. On a
higher level, we want to force the ‖T j‖ variable to become zero if ‖ f ‖ (resp. ‖Ti‖) is larger than
zero. We can accomplish this by using the big-M-method [HL01] and a binary-typed helper variable
Hx :

Hx ∈ [0,1] ‖ f ‖Ti ≤ Hx ·M ‖T j‖ ≤ (1−Hx)

Thereby, M is a “sufficiently” large constant that we use to derive an binary value from ‖ f ‖Ti : if
f is part of the costliest chain, Hx cannot be zero anymore but must become 1, while the constant M
must be larger than any possible value of ‖ f ‖Ti . If Hx becomes 1, then right side of the last constraint
becomes zero and ‖T j‖ is also forced to zero. If ‖ f ‖ is zero, then the last constraint is not active.

Given to an ILP solver, the constructed problem formulation will yield the WCSC on the shared
basic-task stack and the execution counts for all functions and threads on the costliest preemption-
and call chains. However, for an honest evaluation of SETs we have to give upper bounds for the
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combined stack-space allocation of all threads; shared stack as well as private stacks. For this, we use
the described ILP construction for each stack space in the system, solve their objectives individually,
and add them up to get the total stack-space allocation in the system. We must consider each stack
in isolation as the worst-case chains on different stacks are not necessarily correlated in time.

With the described ILP construction method, we can derive an WCSC from multiple call graphs,
preemption constraints, and the set of SET switch function. While call-graph and preemption
constraints are given and fixed in my system model, the selection of switch functions is variable.

6.3.3 Selection of Stack-Switch Functions

In the construction of the ILP problem, we have seen that constraints from different sources (call
graphs, preemptions, switch functions) influence the WCSC. Due to the interplay of these constraints,
an increased co-allocation of switch functions on the BTS does not necessarily lead to an increased
BTS size as mutual exclusivity leads to stack-space reuse. Furthermore, since switch functions
transfer their children’s frame allocations to the shared stack, we can “hide” whole subgraphs of the
call-graph in the shadow of other BTS users. As these subgraphs can no longer consume space on
their private stacks, the private WCSC can become smaller. If we want to reduce the system-wide
stack consumption, the shrinkage of the private stacks must be larger than the growth of the BTS
space.

However, not all switch-functions selections lead to an decreased stack consumption in the system.
Even worse, some selections even lead to an increased consumption compared to the unmodified
baseline system. Figure 6.7 shows an example of this problem with a beneficial and a harmful
switch-function selection. The baseline system contains two mutual-exclusive threads (T1, T2) with
their call graphs, where each box is a function and has (for simplicity) the same stack consumption.
Both call graphs overlap partially and wait in a child function of the entry, which prohibits the usage
of OSEK’s basic-task technique. In Figure 6.7a, we see also the worst-case call chain for the private
and the shared stack. With this system configuration that solely uses private stacks, the system has a
total requirement for stack space of 7.

If we use the switch-function selection from Figure 6.7b, we transfer the largest part of T2’s call
graph onto the BTS, which grows to 3 units. The stack configuration of T1 is not influenced as no
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Figure 6.7 – Switch-Function Selection Problem. Call graphs and stack consumption for two
different switch-function selections in a system with two threads. Both threads are mutual
exclusive and have connected call graphs.
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switch function is part of its reachable call graph11. However, since the blocking functions of T2
still have to be executed on the private stack, it does not shrink to same extend as the BTS grows.
Thereby, the overall stack consumption grows to 8, which is worse than the baseline system.

If we push down the switch function by one edge (Figure 6.7c), we get a different picture: Now
both threads transfer 2 functions onto the BTS, while a maximal stacking depth of 2 remains on
both private stacks. However, as the threads are mutual exclusive, we only have to allocate the BTS
for holding two functions. So, in total, we have to use 6 units for the system’s stacks.

From the example, we see that it can be better to transfer smaller subgraphs onto the BTS than
to transfer the largest possible subgraph. While this non-monotonity is already challenging for the
WCSC optimization, things get worse as the call graphs are not necessarily trees (as in the example)
and preemption constraints also influence the WCSC on the BTS. Therefore, it would be desirable to
formulate also the switch-selection function inside the ILP problem in order to let the solver to the
heavy lifting.

Unfortunately, integrating the switch-function selection into the IPET-generated ILP is not easily
possible. The WCSC problem is an maximization problem, where we the solver can decide on
invocation counts to maximize the overall stack consumption. However, there are many invocation-
count vectors that are also satisfy our constraints; namely, all other valid stack configurations.
These solutions are not chosen, because they do not result in the WCSC but just in a smaller stack
consumption.

In comparison, the switch-function selection is a minimization problem. A fictive ILP formulation
of this problem would have one binary variable to indicate whether a function is a switch function
and would derive a stack consumption as optimization objective from it. Thereby, again, many
assignments to these binary variables would be valid solutions but only one would be minimal.

Combining both, WCSC and switch-function selection, our problem would demand from the ILP
solver to select those invocation counts that maximize the stack consumption and those switch func-
tions that minimize the stack consumption; an impossible task if no hierarchy between both problems
is stated. We achieve this hierarchy by embedding the WCSC problem as fitness function into the
switch-function–selection problem. However, this results in a bilevel optimization problem [CMS07]
which cannot be expressed, in general, as ILP.

Therefore, I decided to use a genetic algorithm [Rec73] to find selection vectors with a smallgenetic
algorithm worst-case stack consumption. Thereby, the genetic algorithm will not find the true optimum, as it is

only a search heuristic, but we will still find solutions that are beneficial for the memory consumption
of the system.

In general, a genetic algorithm works on improving a fixed-sized population of possible solutions.
These solutions are represented by their genomes which are encoded as binary vectors. We can score
and rank the individuals of the population with the fitness function. The genetic algorithm starts
with a randomly generated set of initial individuals and tries to improve the population iteratively
in generations. In each generation, new individuals are breed from one or more old individuals
and scored with the fitness function. From the intermediate population, we drop the worst ranked
individuals until we are back to our fixed population size. At some point, the genetic algorithm
is aborted and the best solution is returned. Please be aware that this brief summary of genetic
algorithms is far from complete as many strategies for breeding, selecting individuals, and choosing
search parameters were proposed [Whi94].

For the switch-function–selection problem, we have to choose the genetic representation of a
solution, as well as to decide on breeding operators. Given a RTCS and all necessary call graphs, we

11Please note that we cannot simply mark the child of the switch function also as a switch function, since this would break
the proposed stack-switch mechanism (see Section 6.3.1). Nevertheless, if we had the possibility to mark parent and child
function as switch functions, the stack consumption would remain the same.
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0100 0100 000

1000⊗ 0000 001

1000 0100 001

2-Point Crossover

01000⊗ 0 00100

01000 1 00100

Mutation

11 functions
2/3 switch functions

Figure 6.8 – Genetic Operators for Switch-Function Selection.

use a genome with one bit for every non-blocking function in the system (see Figure 6.8). If the
bit is one, the corresponding function is marked as a switch function. For the breeding, we choose
(randomly) from two classical operators: mutation (p=0.05) and 2-point crossover (p=0.95). For
mutation, we randomly select one old individual, copy it, and flip one random bit in its genome. For
the crossover, we randomly select two individuals and randomly choose a start and a stop index in
the vector. The new individual is a copy of the first individual where we replace all bits between
start and stop index with the corresponding bits from the second individual. After the crossover, we
additionally mutate the new individual with a low probability (p=0.1).

However, the newly bred individual is not necessarily a valid selection of switch functions as
children of switch functions are not allowed to wait. Therefore, we check this condition on newly
generated individuals. Invalid individuals are put in a second population (n=4), which is only used
for breeding, in order to allow for larger mutations. The first population of valid individuals is kept
at a size of 20, while we breed, in every generation, as long as 6 new valid individuals are generated.
To avoid unnecessary recalucations, the algorithm keeps a cache of genome–WCSC pairs. As we
have no idea about a lower bound of the WCSC, the optimization process is halted if no improved
individual was found for 1000 generations or 60 seconds, whatever comes first.

Please note that I selected the search parameters were set by trial-and-error with a few example
systems and they worked out well enough in the following evaluation.

6.4 Experimental Evaluation

For the experimental evaluation of the SET concept, I will compare the overall stack consumption
for systems that support only private stacks, only basic tasks, or the combination of basic and semi-
extended tasks. For this, I generate over 14000 synthetic benchmarks and feed them to the dOSEK
framework, which optimizes the switch-function selection and analyses the overall WCSC of the
system. Thereby, I use preemption information from SSF-generated GCFGs (Section 3.4.2) in the
WCSC analysis, which demonstrates the scalability of this analysis for a wide range of systems.

6.4.1 Benchmark Generation

For the evaluation, I use synthetically generated benchmarks to investigate on the sensitivity of
the SET approach with respect to changes in different system parameters. For this, I had to write
my own benchmark generator as available generators for real-time systems where either focused
on the RT domain [BB05], provided only implementations for individual tasks [Wäg+17], or were
developed with WCET and scheduling analysis in mind [BB05; Wäg+17; Eic+18]. However, my
benchmark generation focuses on producing systems with thread interaction (no independent task
set), different call-graph shapes (more than a tree structure), and the usage of RTOS services for
synchronization and signaling, while the exact timing of the system is irrelevant.
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Dimension Description Range Stepsize

#threads RTOS Threads [20, 50] 5
#IRQs External, asynchronous thread activations [1, 10] 1
#waiting Number/Ratio of blocking threads [0, 15] 1
#functions Number of functions in the call graph [100, 1000] 100
#resources SRP resource groups with > 2 threads [1, 10] 1

Table 6.2 – Dimensions of the Generated Benchmarks

I identified five important system parameters that will characterize every generated systems
(Table 6.2): Each system has #IRQ sporadic tasks, which are implemented by one or more threads
and activated by an ISR. In total, the system contains #threads independently scheduled threads, of
which #waiting perform a self-suspending system call at some point in their execution. The whole
system contains #resources SRP resources and #functions functions with varying call-frame size. In
the following, I will explain the system generation in greater detail.

We initialize a pseudo-number generator with a varying seed, which allows us to get different but
reproducible systems. First, we generate a directed acyclic thread dependency graph: We generate
#thread threads and give each thread a different static priority, since I target OSEK BCC1/ECC1
(see Section 2.1.3) systems. Additionally, 10 percent of all threads are marked as non preemptable.
The thread set gets partitioned into #IRQ groups, which will be activated by the same external
sporadic event by means of executing an ISR. For each task, we select one thread as the root of a
randomly-generated dependency tree of the task’s threads. Over all threads, we select #waiting
threads to have a second dependency on another thread (without considering task affiliations). Later
these second dependencies will become WaitEvent() system calls (see Figure 2.3b). Furtermore,
#resources thread groups with at least 2 members are selected. Each group will synchronize at one
point with an SRP resource.

After the thread–thread structure is in place, we generate the call-graph structure. For this, we
randomly grow a forest with #thread roots and add #function nodes with a stack consumption that
varies uniformly between 90 and 120 bytes. We also allow for more sharing of functions between
threads by adding 20 cross-tree call edges. Thereby, the call-forest can become a tree but we avoid
the introduction of recursive functions.

For the function bodies, we first assemble a list of system services and subfunctions that have
to be called by a function. From the task dependencies, we derive ActivateTask(), SetEvent(),
and WaitEvent() system calls. Furthermore, we add pairs of GetResource()–ReleaseResource()
sections according to the SRP groups and, with 10 percent chance, a thread blocks an IRQ at some
point in its execution. The system calls are distributed into the first four functions from each thread’s
entry. This restriction stems from the current implementation of the SSF analysis, which forbids the
sharing of system-relevant functions between threads. Nevertheless, as I want to ensure a minimal
call-graph complexity per thread, I use the worst function/thread ratio (200/50) as the number of
functions that invoke system calls per thread.

After the system is generated, I serialize the system-object parameters in an OIL. The functions
are encoded in a C source file, where each function is equipped with an volatile char array that
holds its worst-case stack consumption. Therefore, the actual stack consumption of each function is
slightly larger as the size that was chosen by the benchmark generator.
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6.4.2 Evaluation Scenario and Method

For the benchmark scenario, I choose 49 parameter classes, where each class is identified by the
tuple (#threads, #IRQS, #waiting, #functions, #resources). These parameter classes are derived,
by scaling each of the five dimension individually, from the base class (20, 1, 10, 200, 1). The
dimensions, the explored ranges, and the step size for the scaling are listed in Table 6.2. For example,
between the class (20, 1, 10, 200, 1) and (50, 1, 10, 200, 1), we explore the influence of an increasing
number of threads in seven steps (20,25,. . .,50). For each class, I generate 300 systems (PRNG seed
0–299), which results in a total number of 14700 systems.

The generated applications are translated to LLVM IR [LA04] and lowered to Intel IA-32 machine
code. In this first round of code lowering, I extract the maximum size of the call frames, which LLVM
lays out for each function. This information is, together with the rest of the static information about
the system, fed to the dOSEK framework, which performs the interaction analysis. For the ILP solving,
I use gurobi [Gur19] in version 8.0 and perform all analyses and the switch-selection optimization
on an Intel i5-6400 quad-core system with 32 GiB of main memory. At all points, the main memory
was sufficient to hold the necessary data and the optimization process was CPU bound.

To manifest the optimization result, I annotate the selected function in the IR as switch functions
and add the symbol name of the TOS_BTS variable to the annotation. In the LLVM backend, the
body for annotated functions is enriched with the switch-stack instruction and the code generator is
instructed to use separated addressing schemes for parameters and local variables. For stack-switch
implementation, I had to change 35 source code lines in LLVM 7.0.

In the following, I will investigate on the computation cost and the scalability of the SET-
optimization process, which happens before run time, as well as the achieved stack-space savings in
comparision to the state of the art.

6.4.3 Run-Time and Scalability of the Optimization

First, I want to investigate on the computation costs that we have to pay for the optimization
process itself. These costs mainly consist of the run of the SSF analysis and the time required for
the iterated solving of WCSC ILPs in the genetic algorithm. Since the analysis and optimization are
done offline, the required computation time is not critical as long as it can be done in reasonable
time if we compare to the development cycle of industrial embedded system. Moreover, as SETs are
a non-functional optimization to the stack consumption, we could theoretically execute it only once
for every deployed system. In reality, the SET optimization should be enabled in the late stages of
the product cycle.

Figure 6.9 show the run time of the SSF analysis an the genetic algorithm for each of the five
parameter scaling dimensions. Each bar is arithmetic mean of the analysis run time of 300 generated
systems. The optimization process gets aborted when the genetic algorithm makes no progress for
60 seconds or for 1000 generations. In order to show the influence of this timeout in the stacked bar
plots, the genetic-algorithm time starts at zero and a red horizontal line indicates the 60 second
mark. As the run time of the genetic algorithm is, in most cases, only slightly over 60 seconds, we
see that the genetic algorithm quickly converges to an, at least local, optimal configuration.

The most influence on the run time of the genetic algorithm has the number of functions in
our system (Figure 6.9c). It is the only dimension where the genetic algorithm exceeds the used
60 second timeout significantly (198 s at 1000 functions). However, this effect is not surprising as
the number of functions is directly related to the number of ILP variables which makes the solving
of each ILP instance more expensive. For a single ILP invocation the run time increases from 0.01
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Figure 6.9 – Run-Time of Stack-Optimization Process. For each parameter class, these figures
show the averaged (N=300) run times of the genetic algorithm and the SSF analysis. Thereby,
the genetic algorithm stopped after 1000 generations of no progress or 60 seconds. Adapted
from [DL18].
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seconds for 100 functions to 1.02 seconds for 1000 functions. In this interval, the solving time
increases exponentially and doubles for every 145 additional functions.

It is only due to the abort condition of the genetic algorithm that the overall run time does not
increase with the same exponential factor. In this interval, the number of ILP invocations dropped
from 2695 (100 functions) to 584 (1000 functions), which indicates a less intense exploration of
possible SET configurations.

For the interaction analysis, we see three factors that significantly increase the run time of the
SSF analysis: interrupt sources (Figure 6.9a), threads (Figure 6.9b), and the ratio of self-suspending
threads (Figure 6.9d). In all three cases, this increased analysis time stems from the larger state space
of the system: For an increased number of threads, the number of system objects actually increases
which results in more columns in the AbSS (Section 3.3.1). If more threads are self-suspending,
more threads can not only be marked as ready or suspended, but they can also become waiting. If
we increase the number of interrupts sources, more indeterminism is introduced into the system
and more threads can be activated directly in computation block instead of synchronously from
a system-call block. In all three cases, the SSTG, if we would calculate it, becomes larger, which
results in more GCFG edges. As the SSF analysis performs a fix-point data flow analysis on these
edges, while discovering them on the go, the analysis takes longer.

Furthermore, if the number of GCFG edges increases, also the quality and the quantity of fine-
grained preemption constraints decreases. We can already observe this influence in the run-time of
the genetic algorithm: if the run-time of the SSF increases, the run-time of the genetic algorithm
decreases as less preemption constraints have to be considered by the ILP solver. In the next section,
we will see the influence of these diminishing preemption constraints also in the amount of stack
saving and in the size of the switch-function set.

Apart from the overhead characteristics of the SET analyses, this evaluation does also demonstrate
the scalability of the scalability of the foundational polynomial SSF analysis. We see, that the SSF
analysis stays within reasonable bound if we scale important dimensions, like the number of threads
or interrupts. At most, the SSF takes, on average, 78 seconds for the #threads axis (#threads=50).
The longest SSF analysis of the whole evaluation for an individual system took 216 seconds and
was located in the same (#threads=50) parameter class. Over the large and variational benchmark
scenario, we see the scalability of the foundational polynomial SSF analysis as an efficient whole-
system interaction analysis (RQ1).

6.4.4 Comparison with Basic-Task Systems

Besides the feasibility for realistically-sized applications, the actual stack-space saving potential, as
means to improve non-functional properties, must be quantified. For this, I apply three different
RTOS configurations (ET system, BTS system, and SET system) to the generated benchmark systems
and calculate and compare the system-wide WCSC. Thereby, I put the achieved savings into the
context of the state of the art, as it is applied to industrial applications. Furthermore, I will dive
into more detail of the structure of stack-switch–function sets as SET systems use the stack-switch
mechanism and basic tasks in a hybrid manner.

ET system: As baseline variant, I use an RTOS model that supports only private stacks such that
no stack-space sharing happens between threads. Only the longest call chain is responsible for the
consumption on each stack and all stacks are independent of each other. This configuration reflects
the situation for many event-driven real-time systems, since stack sharing requires some restrictions,
like the no-blocking rule, on the application code.

BTS systems: The second variant supports the transfer of whole threads onto the shared stack if
the thread is not self suspending For this, I greedily (without the genetic algorithm) select all threads
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Figure 6.10 – Stack-Saving Factors. Comparison of the system-wide stack use for the generated
benchmark system. The ET system acts as a baseline for the stack-saving factor calculation.
Each dot in the figure represents the average over the factors of 300 systems for systems with
only basic tasks (BTS system) and a mix of basic tasks and semi-extended tasks (SET system)..
Adapted from [DL18].
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that never invoke a WaitEvent() in their call graph as basic tasks. This second RTOS configuration
resembles the mechanisms in OSEK and can therefore be considered the state of the art when it
comes to saving stack space in industrial applications.

SET-system: The variant is an extension of the BTS-system variant and uses the SET mechanism
where it is beneficial for the system-wide stack consumption. The set of stack-switch functions is
calculated according to the presented genetic algorithm Section 6.3.3. Thereby, we still use the
basic-task mechanism if it yields a lower stack consumption than switching stacks during the thread
execution. For this, we mark a thread as a basic task if the optimization selects the thread’s entry
function as a switch function. Due to this fallback to the BTS configuration, SET systems are always
an improvement over pure BTS system when it comes to stack-space allocations.

For these variants, the WCSC is calculated according to Section 6.3.2 using the same set of
fine-grained preemption constraints for each system. In the following, I will discuss the savings that
can be achieved by the BTS-system and the SET-system variant if we compare both with ET systems
as a baseline competitor.

The results of the WCSC analysis for ET, BTS, and SET systems are shown in Figure 6.10. For
each generated benchmark system, I take the ET system as the baseline and give stack-space factors
relative to this baseline (lower is better). Thereby, I use the geometric mean over the factors, which
are calculated for each generated system individually, for calculating the average (n=300) for each
parameter class [FW86]. Here, the geometric mean over the factors avoids the benchmark pitfall
that not all systems have the same WCSC in the baseline variant.

Furthermore, for SET systems, Figure 6.11 shows the structure of the stack-switch-function set
that is used for the SET systems. Here, I show (arithmetic) average for each parameter class, which
will help us to understand from which mechanism (BT or stack switch) the savings arise and how
the different parameters influence them.

As expected, the SET savings outperform the BT savings as the first is only an extension of the
latter one. Over all systems (n=14 700), the SET systems has a stack-space factor of 0.78, while BTS
systems only achieve a factor of 0.83. In 80 percent of all synthetic systems, the SET system had a
lower stack consumption than the BTS system.

For the parameter classes, we see the general trend that more IRQs (Figure 6.10a) and more self-
suspending threads (Figure 6.10d) as the only parameters that impair the stack saving negatively (for
both variants). For IRQs, we have already discussed in the last section that the decreased determinism
of additional interrupt sources results in more GCFG edges that originate from computation blocks,
which reduces the size of the preemption-constraint set. Therefore, more interrupts harm both BTS
system and SET system, while SET systems have a factor that is 0.05 points lower.

On the other hand, the increased number of self-suspending threads show some interesting
features: First, we see that both lines start at the exact same point (0.29) when no thread is marked
as waiting as we fall back to using basic tasks, if this is possible. So at #waiting=0, all threads are
turned into basic tasks and are allocated onto the same stack (Figure 6.11d). However, if we increase
the number of waiting threads from zero to 15 waiting threads, which increases the ratio of waiting
threads from 0.00 to 0.75, the stack space cannot be shared as efficiently and the stack-space factors
approach the baseline.

While both variants use more stack space, the BT system end up at a stack factor of 0.96 and does
save almost no stack space anymore. On the other hand, the SET system have at most a stack factor
of 0.89. We understand this slow downed stack-consumption trend, if we look at the switch-function
sets in Figure 6.11d: While a waiting thread can no longer become a basic task, we can (partially)
absorb the impact of self-suspension by increasing the number of functions that switch stacks during
the thread’s execution.
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Figure 6.11 – Composition of the Switch-Function Set. We mark threads whose entry function
is selected as a switch function as a basic task. Therefore, the stack saving for SET systems is
implemented via basic tasks and semi-extended tasks. Adapted from [DL18].
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If we look at the #function dimension (Figure 6.10c), we can see that both stack-space factors
are relatively stable over the whole parameter range with a maximal delta of 0.08 points. However,
if we look at the number of switch functions (Figure 6.11c), we have to switch stacks at more and
more points in the call graph to achieve the around the same stack-space factor. Nevertheless, even
in this dimension, we use on average at most 13 function to become switch functions. In comparison,
6 functions were marked as switch functions and 13 threads as basic tasks.

For the #thread dimension (Figure 6.10b), we see that an increased number of threads decreases
the stack-space factors and both variants take advantage and achieve factors of under 0.8. However,
the gap between both variants shrinks with rising thread numbers as the ratio of waiting threads
drops from 0.5 to 0.05 (#waiting is fixed at 10). This observation is confirmed, if we look at the
number of basic tasks (Figure 6.11b): more and more threads are simply marked as basic tasks and
the need for switch functions decreases.

For the #resources domain (Figure 6.10e), we a slight decrease in stack-space factors for both
variants. This stems from the fact that more SRP resources result in more fine-grained preemption
constraints that are used in the ILP analysis, which benefits both variants equally. Interestingly, the
higher number of SRP resources, which is a fine-grained preemption-control mechanism, yields an
slight increase in the number of basic tasks (Figure 6.11e).

While these trends indicate moderate savings in the average case, I want to highlight potential of
the SET approach by looking at the system where the BTS and the SET approach were most beneficial
to the stack-space factor. The best stack saving occurred for a system with no self-suspending threads
(#waiting=0), such that the BTS system (and the equivalent SET system) could reduce the stack-
space factor to 0.008 by marking all 20 threads as basic tasks. The largest difference between BTS
and SET system was seen for a system from the #functions=600 parameter class: The SET system
achieved a factor of 0.45, while BTS system only achieved a factor of 0.95.

6.4.5 Discussion

As no other WCSC method supports fine-grained preemption constraints and intra-thread stack Validity of
Resultsswitching, I was forced to develop and use my own ILP-based analysis method to investigate on the

achieved stack-space savings. This reliance on my own method poses a thread to the validity of my
results. However, if we look at the parameter class without self-suspending threads (Figure 6.10d),
we see a stack-space factor of 0.29. As this parameter class resembles the standard evaluation
scenario for basic tasks, we can compare the results to the numbers reported by others [GD07],
which are around 30 percent.

Furthermore, I used the same set of fine-grained preemption constraints for all variants. While
most traditional WCSC analyses only consider task-level constraints, these fine-grained constraints
benefit both variants and even lead to an increased use of the BT mechanism (Figure 6.11e). Hence,
our the WCSC analysis and the fine-grained constraints will probably be advantageous also BTS
systems, even if no SETs support is present.

FIXME: Adapt this validity section, if the coarse grained BTS numbers are available

Since the evaluation is purely based on synthetic benchmarks, the generalizability of my conclu- Generalizability
sion to actual systems might be limited. By looking at individual systems, we have seen that the
achieved savings can vary widely between systems of the same parameter class. For example, for the
best improvement over BTS systems, I have seen a system with a factor of 0.45 where the average
factor was 0.81 for the same parameter class. However, tried to minimize this potential threat by
putting as little restriction on call and dependency graphs in the benchmark generation as possible.
Furthermore, the evaluation covers so many parameter classes, which were organized along five
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different dimensions, gives me confidence that the observed trends can be reproduced in actual
applications.

For the SET concept, I rely on compiler and RTOS modifications. This might be a problem forCompiler
limitations the application of SETs in industry, as often only closed-source compilers and operating systems are

available. However, in recent years, the trend goes from using closed-source solutions towards using
more open-source operating systems [AEe17].

Furthermore, we can also mimic SETs by manually splitting out transferred call-graph subgraph.
For this, each SET gets an additional accompanying BT that gets activated at the call sites of switch
functions and the invoked function and all parameters are passed explicitly to the BT, which invokes
the switch function on behalf of the original thread. This method requires more interaction with the
RTOS and higher overheads as more thread-control structures are necessary in the kernel, but the
memory consumption could still decrease in an end-to-end comparision as we still benefit from the
optimized switch-function set.

Another technique, which is potentially faster but more invasive, to manifest the switch-function
set is to mimic our compiler modifications with inline assembler, binary post processing, and use
of RTOS hooks. For GCC 8.2, we can insert the stack-switch instruction at the function entry with
inline assembler and clobber the stack pointer to force the usage of base and stack pointer12.This
results in a binary where the switch instruction comes after the prologue (Section 6.3.1, line 6).
Therefore, we would have to post process the binary to reorder the instructions in the function
prologue, which should be achievable in a rather robust manner. The TOS_BTS bookkeeping could
be done without RTOS modifications if the RTOS provides hook functions at thread preemption
and resumption point. There, we would have to monkey patch the RTOS-internal TOS_BTS variable
if a SET gets preempted or resumed on the BTS. This would be possible in OSEK, as the standard
provides PreTaskHook and PostTaskHook.

The compiler modifications also have an impact on the optimization stage, since we force the
usage of both base and stack pointer for the function body of switch functions. This is similar to
disabling the -fomit-frame-pointer optimization for the annotated functions, which results in a
higher register pressure and potentially more register-spill operations. However, in practice, the
effects of -fomit-frame-pointer are negligible as the compiler is still allowed to omit the frame
pointer in all un-annotated functions and the number of switch functions is small (6 functions on
average).

Besides the stack-switch mechanism that I described in detail in Section 6.3.1, other similarSwitch
Mechanism variants are possible and worth considering.

As a first variant, we could change the location of the switch mechanism from the entry code
of the callee to the call-sites13 For this, we would have to manipulate the affected call sites such
that the stack-switch instruction is invoked before the call instruction. Furthermore, all stack-passed
parameters must be pushed also onto the BTS such that the invoked function body can address
all arguments relative to a single register. With this variation, we would have a finer control over
allocation of frames onto the different stacks as the same function could be invoked at one place on
the private and at another location on the shared stack. This finer control could lead to even lower
stack-space allocations and allows us to transfer functions whose compilation we do not control
(e.g., closed-source libraries).

On the downside, this variant has some drawbacks that led me to implement the callee-site
modification. First, the transfer of all parameters before the actual invocation requires larger compiler

12asm volatile("mov TOS_BTS, %%esp;" ::: "%esp");
13This variant is similar to the difference between call advice and execution advice in aspect oriented programming [SL07;

Kic+97]. However, the employed mechanism acts on the ABI and machine-code level instead of the programming-language
level.
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modifications as we would have to handle two stack pointers simultaneously during the switch
sequence. Furthermore, we would require more instructions as the switch sequence is longer and as
we would have to patch several call sites for each transferred function. However, a hybrid approach,
where the call-site modification is used if beneficial, is thinkable and a topic of further research.

For the second variant, we look at the presented stack-switch implementation within the function
body. Here, the stack switch was implemented unconditionally. While this is the most efficient and
most minimal implementation, it has the drawback that no child function of a switch function can
be marked as a switch function itself as the TOS_BTS is not updated in the meantime. We could
solve this issue by making the stack switch conditional and override the stack-pointer only in those
cases where we are not already on the BTS. However, this also has some drawbacks that prevented
me from implementing this variant. First, it makes the compiler modification more complex and
inserts more run-time overhead to the application. Second, the switch sequence now has to know
the bounds of the BTS statically to become efficient, which fixes the location of the stack in memory.

FIXME: Insert sentence, if I have the opt numbers

For security and fault-tolerance, memory protection is an essential technical measure to avoid Protection
Domainsthe spread of attackers and faults throughout the system [�Hof+15]. Thereby, the RTOS instructs

the hardware to prevent a thread from accessing and modifying the memory of another thread.
Therefore, we have to put some focus on the issue if we want to use shared stacks without harming
the isolation guarantees.

In small embedded systems, the protection is often provided by means of an memory-protection
unit (MPU). In contrast to MMUs, an MPU does not provide virtualization but only grants or prevents
memory access based on a set of memory-range CPU registers. Furthermore, the granularity is often
much finer than the page-based protection that is provided by MMUs (e.g., , 8-byte granularity for
Infineon TriCore [08]).

For systems that are capable of running whole threads on the shared stack, the RTOS must
configure one MPU register, at thread-dispatch time, to allow access from the last used byte on the
BTS (TOS_BTS variable) down to the bottom of stack. Thereby, newly started threads cannot access
the stack frames of thread that were preempted on the BTS. If we want to implement SETs, we also
have to configure this BTS memory range but we require a second range to allow a SET thread also
the access to its private stack. As MPU ranges are a limited resource (Infineon TriCore [08] provides
at least 4 ranges up to 16 ranges), this could become an issue for systems with complex protection
and sharing patterns.

One solution to this scarcity of MPU ranges is the capability model that is provided by the
experimental CHERI processor [Chi+15]. There, the processor supports capabilities as unforgeable
fat pointers with memory bounds that can be stored to and loaded from memory directly by the
user without RTOS interaction. We can think of such a capability system as an MPU engine that can
safely be reconfigured by the unprivileged user. Xia et al. [Xia+18] could even show that such a
capability based processor extension is in the same hardware-cost range as an MPU component.
For SETs, we would give a SET two capabilities (one for the private stack and one for the BTS),
which are used as stack pointers. At the stack-switch points, the exchange of the stack pointer would
automatically change the set of accessible memory addresses.

The other shared data structure is the TOS_BTS variable, which communicates the last used byte
on the BTS to the threads. However, access to this variable must only be read only as it is only
updated when a thread is preempted on the BTS. While it is typically for the target domain to
provide read-access to a part or even the complete kernel state to foster efficiency, we can simply
copy the contents of the real TOS_BTS variable to a thread-local variable during the thread dispatch.
Another possibility are global address registers, as they are provided by the Infineon TriCore [08],
that can be marked as read-only in the unprivileged user mode.
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Summarized, SETs will work well with different memory-protection schemes and only require
one additional MPU range.

Another aspect of the SET method is its impact on the WCET analysis of a thread. Since theImpact on
WCET call graph(s) and the CFGs remain untouched, all knowledge about preemptions and the data flow

remain intact and we only have to consider the changed machine code and the disruption in the
stack-pointer value. However, with the current switch mechanism, at most one switch and one
stack-pointer disruption is possible in the (longest) execution path of a SET.

While the additional instruction with one additional memory read (mov esp, [TOS_BTS]) will
have a minor impact on the WCET, the disruption in the stack pointer can have a larger impact. As
the value of TOS_BTS is not known exactly, the cache analysis cannot say for sure which cache lines
will be evicted by the call-frame allocations after the stack switch. Therefore, the cache analysis
becomes more conservative and the WCET bound can increase. As of this reason, the WCET and the
WCRT analysis should be done after the application of SETs, which fosters my argument that only
the implementation carries the truth about the actual system behavior.

6.5 Summary

Starting point for the semi-extended task (SET) approach was the observation that stack-space memory
is allocated statically for each thread if private stacks are used. This leads to larger-than-necessary
stack-space reservations as the dynamic maximum of existing call frames in the whole system is
often smaller than the accumulated worst-case stack consumption (WCSC) of each thread. While basic
tasks and the usage of a basic-task stack (BTS) already ease the problem significantly by sharing the
stack space between threads, the basic-task concept cannot be applied to self-suspending threads.

With semi-extended task (SET), I presented a concept the BTS memory among basic tasks and
self-suspending threads by partially transferring a thread’s stack frames onto the shared stack. For
this, a SET transfers parts of its execution at statically determined points from its private stack,
where it starts, to the BTS. There, the SETs and basic tasks draw their call-frame allocations from
the same stack-space reservation. If some of these allocations are mutually exclusive, the reservation
can be smaller as memory is shared between the threads.

On a more technical level, SETs switch the stack at marked switch functions, which exchange
the stack pointer in a modified function prologue with the top of the BTS; at return, these functions
restore the private stack pointer. This special prologue is done by a modified compiler backed that
manifests the switch-function selection, which is carried out by a genetic algorithm that searches for
an beneficial balance between private-stack sizes and the BTS reservation. For this selection process,
and for the actual dimensioning of the BTS, I developed a new worst-case stack consumption (WCSC)
analysis technique, which is based on the implicit path-enumeration technique (IPET), and that benefits
from fine-grained preemption constraints, which I extract from the global control-flow graph (GCFG).

In the evaluation, I could demonstrate the benefits of the SET approach in comparison to state
of the art by applying the principle to over 14 000 generated benchmark systems, which cover
five different dimensions of real-time system parameters. Thereby, the polynomial system-state
flow (SSF) analysis proved to be feasible and scalable, even for large real-time applications. Over
all generated benchmarks, the SET concept reduces the stack-space reservation on average by 7
percent if compared to a pure basic-task system; 80 percent of the systems ended up with a smaller
reservation. Compared to a system without stack sharing, the reduction was even 22 percent and all
systems saved stack space.

With this chapter, I could show that a control-flow sensitive interaction analysis scales to a wide
range of real-time systems and provides necessary insights to improve non-functional properties
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(RQ1). Furthermore, we saw that the segregated allocation of stack space leads to a memory
consumption that is higher than the actual demand of the real-time application at run time (RQ2).
With the integrated view on the application–RTOS interaction, I could reduce the system-wide stack
consumption significantly over a wide range of systems (RQ3).
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7
OSEK-V

An Application-Specific Processor Pipeline

Hardware is just petrified software.

Karen Paneta Lentz

With the SET approach, we saw how we can use interaction-aware optimizations of the whole
system to cut down on overly pessimistic static memory reservations for the stack space. In this
chapter, we use the results of the interaction analysis to tailor the execution platform that runs the
RTCS tightly to the requested RTOS behavior. Thereby, I explore the benefits and costs of extensive
RTOS specialization that reaches to the domain of hardware design.

Using a RTOS provides abstractions and interfaces to the developer, which eases the implemen-
tation and composition of the real-time application. However, as using generic RTOS services comes
at the cost of introducing latencies and memory overheads, developers, especially in a HW/SW
codesign setting, try to avoid try to avoid the usage of a full-blown RTOS. With OSEK-V, I mitigate
this trade-off by pushing the application-specific interaction model into the processor pipeline to
replace the RTOS by an behavioral-equivalent hardware component, the system-state machine (SSM)
This application-specific component, which moderates the execution of threads from outside the
processor, significantly reduces the event latencies, interrupt-lock times, and the memory footprint
at a moderate FPGA-resource consumption.
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7.1 Problem Field and Related Work

7.1 Problem Field and Related Work

In the introduction, I started my meditation about real-time computing systems, by comparing the
specifity of the centrifugal governor with the generality of software-based control-systems. While
the first provides exactly the required control of a physical process at high engineering cost, the
latter provides a high degree of flexibility and updatability but introduces latencies and jitter in
the discretized control algorithm. This tension field is still evident in hardware/software co-design
settings where the hardware is no longer seen as a fixed and unchangeable bedrock for the execution
of software, but is adapted towards the specific requirements of the indented application. In this
setting, the question is urgent what should be put in software and what should be part of the
hardware?

As this thesis is focused on the real-time operating system and its interaction with the application,
we have to consider the required RTOS services, as well as the introduced frictions if we implement it
in software. On the one hand, the abstractions offered by the RTOS, like prioritized threads, periodic
activations, and synchronization, significantly ease the development and composition of applications
with multiple interacting control tasks. And while ambiguities exist between the RT domain and
the OS domain (see Chapter 2), there is often a rather straight forward projection between both
abstraction levels. In total, the RTOS interfaces foster the productivity of the developers.

On the other hand, a system is less analyzable/predictable with the usage of a software RTOS if
we compare it to bare-metal, or even hardwired, implementations of the real-time system. Since
the RTOS execution and the application compete, with the RTOS always winning, for processor
time and cache lines, significant latencies, jitter, and cache-induced preemption delays are put as
a burden on the application. In Chapter 4, we have seen parts of this impact of the RTOS on the
worst-case response time. Furthermore, engineers shy away from software solutions if only parts of
the functionality are actually required as they fear the unnecessary overheads. In total, RTOSs come
often as a all-or-nothing package that interferes with your application and that makes it harder to
build a predictable and analyzable system.

If we push the RTOS into the hardware, we can reach a compromise, where we can still use
RTOS abstractions and interfaces but avoid (some) of the negative effects of executing it in software.
By offloading RTOS chores to a separate hardware component, like a scheduling co-processor, RTOS
and application no longer compete for resources and we can minimize their interference. For this
hardware component, we also have the chance to specialize it exactly for its chores instead of
executing the RTOS’ algorithms on the general purpose processor. Conceptually, such a push down
to hardware harmonizes well with the system community’s interpretation that the operating systems
is an extension to the actual processor [Tan06] and part of a hierarchical machine.

One prime example, where the trade-off between a hardware and a (partial) software imple-
mentation of the same OS functionality, namely virtual memory, was explored, is the MIPS [01]
architecture. In its early days, MIPS implemented address translation with an translation-look–aside
buffer that had to be filled by software [BLM17, cha. 4.6]. With this solution, the hardware was kept
small but the user had to pay the execution and interference cost for walking the page tables. In later
revisions of MIPS, a hardware-based page-table walker was introduced that offloaded this chore to
a separate hardware component, which fostered performance but also reduced the flexibility for the
OS developer how to organize the page tables.

Aside from MIPS, pushing (parts of) the operating system and its chores, like protection, schedul-
ing, communication, and synchronization, into the hardware has a long standing tradition [DD68;
Org72; CKD94; AA82; Bur+99; Nak+95; Arn+14; Chi+15]. In this discussion of the related work, I
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will focus on works that touched the scheduling and thread synchronization as these are the most
important aspects of an RTOS as they directly influence the timeliness of the whole RTCS.

HybridThreads [Agr+04; Agr+06] accomplishes low run-time overhead and fast interrupt han-
dling by placing the OS scheduler in a separate hardware component. They implemented different
scheduling policies, like round robin or preemptive-priority scheduling, whose decisions are mani-
fested by sending an IRQ to the processor which results in a thread switch. Mutex-based Thread
synchronization is also offloaded to hardware and allows the synchronization between software
threads running on the CPU and activities that are performed by specialized hardware accelerators.
The proposed hardware components are application agnostic and configured from software.

Sloth [Hof+09; Hof14; Mül+14; Dan+14; Hof+12; HLS11] achieved the RTOS offloading
goal for OSEK-like systems without requiring specialized hardware. For this, the scheduling was
delegated to the interrupt controller, which already supports the selection of the highest pending
interrupt. By mapping threads and ISRs to distinct interrupt sources, they could not only reduce the
interrupt and kernel latencies drastically, but also provide a uniform priority space, which avoids
the rate-monotonic priority inversion [LMN06]. With Sloth on Time [Hof+12], they offloaded the
generation of periodic signals for a time-triggered system to the timer subsystem of the Infineon
Tricore processor.

The FlexPRET processor [Zim+14] is an extension of a RISC-V [Wat+14] pipeline to allow for
the efficient and predictable execution of mixed-criticality systems. Their pipeline, which supports
multiple hardware threads (in RISC-V lingo: harts), distinguishes between hard real-time harts with
a guaranteed time budget and soft real-time harts. Their execution is interleaved on the instruction
level, while the configured budgets are enforced. However, FlexPRET provides a processor abstraction
instead of a thread abstraction as inter-thread dependencies or synchronization are not considered.

In constrast this, the ReconOS project [LP09] also provides a unified OS interface, resembling
POSIX, for software threads and hardware components. Here, the hardware components, which can
be created on the FPGA by dynamic reconfiguration on the fly, are integrated into the software-run
OS by means of a delegate thread, which invokes requested system calls in their name.

With a greater focus on configurable systems, the δ-framework [MB02] aims for an RTOS-HW
codesign where the user decides manually whether components of the Atlanta RTOS are instantiated
in hardware or in software. Thereby, it provides an application-specific platform on the level of
features that is agnostic to the number of system-object instances or their interactions. In a similar
direction, LaVA [MBS15] combines the instantiation of peripheral devices and accelerators and their
automated integration into the RTOS’ device-driver interface.

Compared to the these OS–HW integrations, I aimed for a high degree of application-specific
tailoring of the RTOS component. Instead of reproducing the software implementation structurally
by means of an hardware implementation, OSEK-V incorporates the interaction model, and thereby
only the behavior, into the hardware. Thereby, (synchronous) system calls become actual machine
instructions, instead of partially interpreted ones, which somewhat resembles the path-specific syscall
optimization known from Synthesis [PMI88; MP89]. There, hot-path system calls, like read(), where
(partially) specialized, for example, for the used file descriptor at run time; thus, avoiding most of
the dynamic dispatching. Later, with the Tempo framework [McN+01], an automated approach for
such specialization was proposed.

At the static end of system-call specialization, Barthelmann [Bar02] proposed to optimize the
register allocation such that a minimal number of registers is alive at a system-call site, which
minimizes the thread context. With our own work [�DHL15b; �Die14], we pushed static system-call
specialization with the aid of the interaction model in a direction where we can avoid scheduler
invocations if the GCFG contains no edge to another thread at a system-call site. Nevertheless, the
code structure of the implementation was still the line of guidance for these specialization methods.
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In OSEK-V, I express the interaction model by means of a finite-state machine (FSM). Using FSMs
as the organizing principle of a whole system has also been proposed for deeply embedded sensor
nodes to enhance simplicity and energy efficiency: SenOS [KH05] is a software event dispatcher and
executor for multiple manually-encoded state machines. Kothari, Millstein, and Govindan [KMG08]
derive compact state machines (< 16 states) from TinyOS programs by symbolic execution to foster
understanding of existing applications.

7.2 System-State Machine as Executable Interaction Model

The core idea behind OSEK-V is to express the behavior which the RTOS would expose for a given
application as a FSM. This system-state machine (SSM) is a Moore-automata [Moo56] that transitions
on system events, like system calls or external interrupts, and outputs the currently running thread. In
Section 7.3.1, I will explain in detail how the integration of the SSM results in an application-specific
processor pipeline.

SSM : 〈system event〉
︸ ︷︷ ︸

input

×〈FSM state〉 → 〈FSM state〉 × 〈current thread〉
︸ ︷︷ ︸

output

While we can describe, in general, the behavior of every OSEK kernel as such a FSM, the SSM
includes only the desired kernel behavior, with regard to scheduling, in the presence of one specific
application. This focus on one specific application allows us to tailor the SSM implementation close
to those RTOS services that this application actually demands from the RTOS it is running on.
Therefore, our first goal is to derive a minimal SSM that exposes the same rescheduling sequence as
a normal kernel implementation if fed with the same sequence of events.

The base for the SSM construction is an ASM-derived SSTG (see Section 3.3.3.2). I use this SSTG ASM-derived
SSTGvariant as an interaction model as it already exposes a smaller number of nodes but remains trace

equivalent to the more detailed ABB-based SSTG. Since we want to capture the RTOS’ rescheduling
sequence, trace equivalence is sufficient and allows for SSTGs with a lower number of states and
edges.

In Figure 7.1a, we see three ASMs that form a complete system with one ISR, one thread, and
the idle thread. Derived from it, Figure 7.1b depicts the corresponding SSTG: Each node consists of
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Figure 7.1 – System State Machine. From the application state machines (ASMs), the SSE analysis
derives the an SSTG, which is the base for the SSM. Adapted from [�DL17].

137



7.2 System-State Machine as Executable Interaction Model

one ASM state, which indicates the currently running thread and the currently executed ASM state,
in the foreground and the preempted, or not-yet started, threads in the background. The edges are
labeled with those system calls that the application has to send for the transition to occur.

The ASM-derived SSTG is already one implementation of the SSM concept for the given ap-
plication. Upon a system event (system-call labels or interrupt), it transitions between states and,
by inspection of the SSM state, we can derive the currently running thread as an output signal.
However, the SSTG is still larger than necessary as its SSM trace distinguishes between different
foreground ASM states instead of only providing a trace of currently running threads.

In order to get a minimal SSM, we minimize the SSTG and allow that states with different
foreground ASM states are merged as long as the thread-switch trace remains equivalent. Luckily,
state-machine minimization is a well covered and long standing topic of computer science [Moo56;
Hop71]. Therefore, I will only discuss the rough outline of the used Moore’s algorithm and discuss
the SSM specifics bits.

In general, Moore’s algorithm for minimizing deterministic finite automata (DFA) works by an
iterated state-partition refinement. Goal is it to build a smaller DFA that accepts the same formal
language as the original DFA. For this, we start with the 0-equivalence partition of the state set: each
acceptor state gets its own partition and all non-accepting states are placed in one large partition. In
a fix-point algorithm, we further split partitions according to an equivalence relation, which derives
a set of 〈edge label, followup partition〉-pairs from the outgoing edges of a state and uses this set as
a comparison key. After the algorithm reaches a fix point, every partition becomes a new state in the
minimized DFA and transitions are added accordingly to the partition’s connections.

Applied to SSM minimization, we have to make some adaptions to this basal algorithm. First,SSM
minimization the SSM is no acceptor for a formal language but its value is the output signal. Therefore, we form

the 0-equivalence partition according to the currently running thread. Furthermore, the SSM is
allowed to ignore system events as long as the thread-switch trace remains untouched. For example,
if two system calls are always executed in sequence without intermediate rescheduling, the effect on
the SSM can be tied to the latter system call. Therefore, we only use the set of followup partitions as
the comparison key between states, instead of also considering the edge labels.

As result of this minimization, we get an SSM that is thread-switch trace equivalent to the SSTG
with a minimal number of states. However, the number of transitions is not yet minimal for our
SSM: Due to the state-merging process, we introduced transitions that are self loops with system
events as labels. If an self-loop label occurs only on on loops, it can never bring the system into an
observable different state, and we can eradicate the label, the corresponding SSM states, the system
event, and all related system-call sites. At this point, it is important to emphasize that SSM labels
are not system-call types but system-call sites.

One point where we use this self-loop eradication is the eradication of interrupt system events
from the SSM. Since interrupts are the only event that is triggered asynchronous from outside
the processor, we introduce an artificial isr() system call that is unconditionally executed at the
ISR entry (see Figure 7.1a). As no thread switch happens between interrupt event (E) and isr()

invocation, the interrupt becomes a self-loop and the isr() performs the necessary state modification.
Thereby, we are able to remove all interrupt edges and end up with an SSM that only transition on
(artifical) system-call invocations.

In Figure 7.2a, we see the minimized SSM for the example system from Figure 7.1. We see that
the interrupt edges are removed from the SSM and that both interrupt–iret loops from the SSTG
are folded into only two SSM states. Furthermore, from the example it becomes more clear to what
degree the SSM is application specific: While the application can return from the interrupt state 3
with or without invoking the ActivateTask() system call, the SSM contains no information why
this decision is made; it only transitions upon the sequence of system events Thereby, the SSM is
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Figure 7.2 – Minimized State Machines. The minimized state machine, with and without assigned
state, output, and transition labels, for the running example. Adpated from [�DHL15a].

usable for many different applications as long as no new state–state transitions and no new system
events are introduced.

After the minimization, we have an SSM that is fully symbolic. Each state identifier, each thread Hardware Im-
plementationidentifier, and each label are symbolic (e.g., “TerminateTask()”, “T1”) and make only sense in the

abstract domain. For an instantiation in hardware, we have to choose bit-vector widths for each
symbol class and concrete numerical values for each symbol. This selection process, which is known
as the state-assignment problem [VS89; Dev+88; VT88], largely influences the complexity of the
hardware implementation.

Thereby, a good state assignment is heavily dependent on the targeted hardware design (i.e., PLA,
CPLD, FPGA, or an actual ASIC). As this area is not the main focus of this thesis, I chose the classical
NOVA approach [VS89], which targets an optimal encoding for a two-level logic implementation as
it is found in programmable logic arrays (PLAs). NOVA chooses the bit vectors for the edge labels
(system events) and the states identifiers, when supplied with an encoding for the output signal
(thread identifier). For these thread identifiers, I choose simply choose the thread id as assigned by
the dOSEK generator, which assigns them in the order of thread declaration in the OIL file. However,
for the intended use of the SSM, also the output encoding could be chosen arbitrarily, but this is
not supported by NOVA. The result of the state assignment can be seen in Figure 7.2b, where, for
example, “TerminateTask()” is encoded as 0002.

With the state-assignment, we derived a logical function Bn → Bn from the SSM. In its truth
table, each row represents one transition. For example, for the “TerminateTask()” edge, we get
“011 000→ 110 10”. Since NOVA internally uses the ESPRESSO [Rud86] heuristic logic minimizer,
which collapses rows and introduced dont-care terms to derive a minimized truth table. With this
table, we could directly implement the SSM with a PLA chip, as shown in Figure 7.3 for our running
example.

Another implementation variant, which I used for prototyping OSEK-V is to implement the derived
SSM function in software. On every system event, I loop over the minimized truth table, check if the
input bit vector matches a row and OR it onto the result vector. While this implementation is able to
replace the large parts of the kernel code of an OSEK, it is only practical for very small systems as
the kernel overhead scales linearly with the number of truth-table rows. However, for an scenario
where code obfuscation is desired, such an software-implemented PLA variant can be of practical
use. For the rest of this thesis, I will ignore this implementation variant, but refer to [�DHL15a],
where I investigated on the arising overheads.
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Figure 7.3 – PLA Implementation of the SSM. With the minimized truth table, we could imple-
ment the SSM binary function in a programmable logic array (PLA). From the system event and
the old SSM state, it derives a new state and the next currently running thread. Adapted from
[�DHL15a].

7.3 The OSEK-V Processor

7.3.1 Pipeline Integration of the SSM

Since the goal of OSEK-V is to provide an application-specific processor design behaves, in presence
of a given application, like an software-implemented RTOS kernel, we have to integrate the SSM
into a processor. For this, I extended the Rocket core generator [Lee+14; Asa+16] to include a
given SSM model, in form of the minimized truth table and some system-configuration information
(i.e., number of threads), into the design. The Rocket is a 5-stage in-order scalar core generator that
implements the RISC-V [Wat+14] instruction-set architecture (ISA), which is explicitly designed to
support computer-architecture research. Its generative approach goes well with the OSEK-V concept
and already exposes a multitude of configuration switches to build an application-specific processor.
For OSEK-V, I used in the 64 bit mode (RV64) as the 32 bit mode was not mature enough at the time of
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Figure 7.4 – The OSEK-V Pipeline. The 5-stage in-order Rocket [Asa+16] core is extended by
the system-state machine (SSM) and hardware multithreading. Each RTOS thread gets executed
in its own hardware thread (hart) and the SSM controls the hart selection. Communication
from the pipeline to the SSM is done with special instructions in the execute stage. Adapted
from [�DL17].

FIXME: Vereinheitliche den Threadnamen im Running Example auf "T"
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the OSEK-V development. The generator produces a cycle accurate simulator of the processor, as well
as a Verilog description that can be synthesized for an FPGA or used in an ASIC process [Lee+14].

Figure 7.4 shows the extended Rocket pipeline. In a nutshell, OSEK-V uses hardware multithread-
ing, with one hardware thread (hart in RISC-V lingo) for every RTOS thread. The scheduling of
these harts is controlled by the SSM, which receives system events from the execution stage of the
pipeline. Internally, the SSM consists of a register that holds the current state and an implementation
of the SSM transition function. Furthermore, it exposes the currently running hart and is able to
stall the pipeline if a transition takes more than one cycle.

Traditionally, hardware multithreading, which was first researched in the IBM ACS/360 project
[Fen73; Cel+73], is used to increase the utilization of the processor by exploiting instruction-level
parallelism. For example, in a superscalar processor, a second hart utilize the arithmetic unit while
the other hart waits for the cache to answer a memory request. In these simultaneous hardware
multithreading scenarios, the scheduling between harts is done independent of the operating system
and each hart presents itself as an actual independent CPU, although it shares its execution engine
with others.

For the implementation of multithreading in the Rocket core (see Figure 7.4), I had to add a hart
tag to each stage that travels alongside a specific instruction through the pipeline. The next-program-
counter generator, which holds one program counter (PC) for every hart, inserts the current hart tag
and the current PC into the instruction-fetch stage. Down the pipeline, we use the tag to select the
hart-private register context, which is generated for every hart, in the instruction-decode/operand-
fetch and the commit/write-back stage.

As the threads have to communicate with the SSM, the OSEK-V pipeline provides two additional
machine instructions: ssm.tx and ssm.ld. The ssm.tx instruction sends the system-event number,
which was calculated in the state assignment, from the execution stage to the SSM, which performs
the necessary transition. Before the SSM performs the transition, it stalls the execution until the
instructions previous to ssm.tx, which are still in the memory and the commit stage, have completed.
Thereby, I ensure that traps, which can occur in the memory stage, remain precise. If an hart switch
is necessary, I use the branch-mispredict logic to flush the pipeline and to issue an instruction fetch
for the new hart’s program counter.

The other new instruction, ssm.ld, is required during the system boot. There, the RTOS boot
code loads the address of each thread’s entry function into the corresponding program counter in
the NPC-Gen component (see Figure 7.4).

7.3.2 External System-Activation Patterns

Until now, the presented OSEK-V implementation services interrupts in software ISRs. Therefore,
the current thread execution gets interrupted and the pipeline is used to execute the code of the ISR
before it returns control back to the thread. This comes at the cost of flushed pipelines, evicted cache
lines, prolonged response times, and extended costs for interrupt synchronization. While we have to
use an CPU to execute the code in user-defined ISRs, the OSEK-V model allows us to offload periodic
alarm activations into a separate hardware component that stands besides the SSM component.
With this offloading, we can reduce the interruption frequency and the computation demand on the
main pipeline.

Furthermore, since we have the interaction model available, we can decide statically for which static alarms
periodic events such an application-specific offloading is especially fruitful. Instead of utilizing a
general-purpose timer hardware that is configured dynamically, like it was done by Hofer et al.
[Hof+12], I aim for an more tailored variant that supports no dynamic reconfiguration. For this, I use
a static analysis of the system configuration, which declares all periodic events, and the interaction
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Figure 7.5 – Static-Alarm Component. Periodic system events, like OSEK alarms, are imple-
mented into a hardware component if the event is not reconfigured at run time. If the periodic
signal occurs, the alarm component sends a packet of transition signals to the SSM to ensure
atomicity.

model to search for OSEK alarms that are never reconfigured at run time but are started with a fixed
period and offset at system boot.

For each of these static alarms, the chip generator instantiates, according to the given static
offset and period, a specialized timers that is placed in the static-alarm component (see Figure 7.5).
For example, if the period is a power-of-two, we can use a simple flip-flop clock divider instead of
an actual counter. Driven by the real-time clock, these timers push system events into a command
queue, enclosed by the isr() and iret() event.

For the transfer of the system events from the queue to the SSM, we must ensure to result in
the same system semantic of a software-implemented alarm subsystem. For this, we sent events
to the SSM only if the pipeline does not currently block interrupts. Furthermore, we must sent
isr()–iret() sequences atomically to produce the same event stream that an timer ISR would
issue.

With the alarm offloading, we remove those code paths from the timer ISR that has to manage
the static alarms. However, non-static dynamic alarms are still handled in software and we end
up with the same number of interruptions if we use a periodic IRQ with a fixed base frequency.
Nevertheless, the static analysis can inspect the alarm-reconfiguration system calls and deduce, for
some systems, that we can lower the base frequency of the timer ISR activation. Thereby, we can
also cut down on the number of interruptions by offloading of static alarms.

7.3.3 System Generation and Startup

The adaptation of the hardware for the requirements of one specific application also requires an
adaptation of the software. This adaptation is done, fully automated, by the dOSEK generator
(see Section 3.6) which is able to manipulate application code, as well as to specialize the kernel
implementation. The Rocket generator reads in the processor configuration, SSM and number of
threads, and generates an OSEK-v instance; either as cycle-accurate emulator or as Verilog code that
can be used for FPGA synthesis.

In the application, we replace the system-call sites with ssm.tx instructions which send the
corresponding system event to the SSM. These code locations have to be enclosed by interrupt
disable and enable instructions to ensure that interrupts get enabled after a thread is resumed from
an rescheduling point in an ISR. This is still necessary, since the current implementation only maps
normal threads and the idle thread to a separate hart, while ISRs are executed in the context of the
currently running hart. This is a trade-off between ISR latency and used hardware resource, since
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the increase in the register file is, besides the SSM size, the driving resource consumer. However, it
is possible to use a dedicated hart for each ISR. On a technical level, we modify the SSM function to
output the hart identifier of the interrupted thread instead of a separate hart identifier for each ISR.

Furthermore, we have to initialize the program counters for each hart at boot time. For this, the
kernel uses the ssm.ld instruction which sets the instruction pointer of an specific hart to a given
code address. This address points to an thread-specific initialization function that sets up the thread’s
stack pointer and the generator ensures that the thread jumps back to this stack initialization after a
TerminateTask() system call.

7.4 Experimental Evaluation

In the evaluation, I applied the presented approach to the i4Copter (see Section 4.5.3) to demonstrate
the costs and the benefits of OSEK-V. Thereby, we will see how the push down of RTOS logic into
the hardware results in highly-improved kernel latencies and less interferences with the application
execution. Afterwards, I will discuss these results, strengths, and weaknesses of OSEK-V.

7.4.1 Evaluation Scenario

As application, I used the task setup of i4Copter (see Section 4.5.3) with only the minimal application
code to mimic the directed and undirected thread dependencies. In the interaction analysis, I used
ASMs (see Section 3.3.3.2) and application knowledge about implicit deadlines (see Section 3.3.3.1)
to start the SSM construction with a small SSTG. In total, the i4Copter system has 11 threads,
3 alarms, 1 user-defined ISR, and 52 system-call sites. Two of these alarms are static, while the
watchdog timer must be managed in software but requires a much lower timer IRQ base rate.

For the FPGA costs, I compare two different OSEK-V cores for the i4Copter with the Baseline
Rocket core: the first OSEK–V core just includes the SSM, where the second also uses static alarms
(SSM+Al.) Additionally, I also built an OSEK-V core for the running Example (Section 7.2), which
uses an SSM without static alarms.

The interaction analysis and the SSM generation was performed with dOSEK and NOVA (both
single-threaded) on a single Intel Core i7-2600 machine. For the OSEK-V generation, I used the
extended Rocket chip generator and produced, for each variant, a cycle accurate emulator in C++ and
an Verilog source file. The Verilog code was synthesized with the Xilinx Vivado 2015.2 toolchain on
the i7-2600 machine for the Zynq-7020 FPGA chip, which is integrated into the ZedBoard platform.
For the synthesis, Vivado was instructed to clock the Rocket’s pipeline with at least 25 Mhz. For a
single logic cell, the Zynq-7020 FPGA features a Fmax of 100 Mhz.

7.4.2 FPGA Synthesis Costs for the OSEK-V Core

First, I want to discuss the size of the SSM, the required run time to calculate it, and hardware costs
that arise, if we integrate and synthesize it in the Rocket core for the Zynq-7020 FPGA. For this,
Table 7.1 gives an overview about the generation time and the SSM size, which is the driving factor
behind the FPGA implementation costs.

Second, Table 7.2 shows the results of the FPGA synthesis. Here, we see required FPGA resources,
as well as the size of the software implementation. For the FPGA side, combinatorial circuitry is
implemented in lookup tables (LUTs), which can also be used as a memory element (Memory-LUT);
flip-flops are another storage option in FPGAs. In Table 7.2, I only show those resources that differed
between the variants (i.e., the usage of block RAM remained equal).
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Example i4Copter

SSM Generation [seconds] 0.06 73.68

SSM (Initial FSM) #States 9 4834
#Transitions 13 7 479

SSM (Minimized FSM) #States 6 701
#Transitions 9 1 246

Transition Function #Clauses 4 781

Table 7.1 – SSM Generation for the Benchmarks. The SSTG interaction model was build with the
SSE, shrunk with an variant of Moore FSM minimization, and implemented as an PLA transition
function with NOVA. Adapted from [�DL17].

Example i4Copter

(Figure 7.1) Baseline SSM SSM+Al.

FPGA LUT 29 460 29216 32 041 32341
Memory-LUT 1 033 1160 2 016 2016
Flip-Flops 14 208 14117 14 129 14196
Fmax [Mhz] 26.37 26.56 26.7 25.67

RTOS (SW) Code Size [bytes] 2 436 7848 3 621 3 349
Data Size [bytes] 11 1904 406 350

Table 7.2 – Resource Consumption of Different OSEK-V Cores. The Verilog code for three OSEK-V
cores, one for the running example and two for the i4Copter, were synthesized for a Xilinx
Zynq-7020 Zedboard. Adapted from [�DL17].

The running example results in a very small SSM, which is calculated and minimized in fractions
of a second (see Table 7.1). Since the SSM is generated already almost minimal, the minimization
cannot cut away much redundancy. Therefore, the minimized state-transition function consists only
of four AND clauses (four AND gates with the outputs combined in one OR gate). Compared to
the baseline Rocket (equal to i4Copter/Baseline) , we see only a small increase in FPGA resource
usage (+127 memory LUTs), when compared with the baseline Rocket core (see Table 7.2). These
increases mainly stem from the second register file, which is synthesized by Vivado in Memory-LUT
cells, for this two hart system (idle thread, thread T). Without counting the stack space, we end up
with a minimal RTOS kernel that only uses 11 bytes of volatile memory for managing the single
alarm dynamically (static alarms were not used).

For the i4Copter benchmark, the SSM generation takes more than one minute (see Table 7.1),
where the run time is mainly driven by the state-assignment phase (96.95 %). The initially large
SSM get dramatically shrunk by the Moore minimization (−85.5 % less states). The resulting SSM
transition function takes a 15 bit input vector (state: 10 bits, system event: 5 bits) and produces a
14 bit output signal (state: 10 bits, hart id: 4 bits).

On the FPGA side (see Table 7.2), we end up with a significant larger core by using an SSM.
Without static-alarms, we require 9 percent more LUTs, which are mainly used for the SSM component
(76.09 %). The large increase in memory LUTs (+983) stems mostly (96.24 %) from the significantly
larger register file, which now must hold 12 register contexts instead of only one. A closer investigation
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of the synthesized system reveals that we require 86 distributed memory cells per mapped RTOS
thread.

If we introduce static alarms to the SSM system, the FPGA costs remain on a similar level and
we only require a few additional LUTs and flip-flops. For all variants, the Vivado synthesis tool took
about the same time (at least 10 minutes) and was always able to fulfill the 25 MHz timing constraint
for the pipeline.

On the software side of the i4Copter OSEK-V core, we see that the increased LUT count translates
into a much smaller RTOS code segment since no scheduler or SRP resource management is required.
From the 1498 bytes that we saved in the data segment, 1440 bytes were formerly located in the
software-managed thread contexts (120 bytes per thread). If we add static alarms (SSM+Alarms),
the RTOS shrinks further as two of three alarms are now managed in hardware.

7.4.3 Run-Time Latencies

In order to assess the benefits come with using an OSEK-V core, I ran the i4Copter for three hyper
periods with different system configurations in the cycle-accurate circuit simulator. During the
execution, a trace of the pipeline states was recorded, analyzed, and the results are shown in
Figure 7.6. The first two variants run on an unmodified Rocket core and give the necessary baseline
for the OSEK-V results: The Baseline variant is the standard dOSEK implementation; all system
calls are generic and alarms are managed in software with a constant-frequency timer IRQ. The
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Figure 7.6 – OSEK-V Latencies and Cache-Stall Cycles. Summary of the i4Copter running on
different Rocket and OSEK-V Cores. The execution trace is divided into execution time, where
instructions progress in the pipeline, and cache-stall cycles, where the pipeline is totally idle.
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Specialized variant uses the results of the interaction analysis to generate specialized system-call
implementations for each system-call call site [�DHL15b]. In these specialized system calls, the
generator removes unnecessary operations, like finding the highest-priority runnable thread, if
the result can be deduced from the GCFG. The SSM and the SSM+Alarm variants execute on
application-specific OSEK-V cores (without and with static alarms).

In the cycle-accurate trace, I search for instruction sequences that manipulate the kernel state
and categorize them into synchronous system calls (with and without thread switch), timer ISR
activations (with and without thread switch), and activations of the static-alarm component. Within
these instruction sequences, I distinguish between cycles where the pipeline makes actual progress
(Figure 7.6 (a+b)) and cycles where the pipeline is fully stalled because it waits for the cache
((Figure 7.6 (c+d)). This separation allows us to discriminate the actual computational cost of
OSEK-V from the influence of the processor-specific cache hierarchy. For the execution times, I give
not only the average run times but also the largest observed run times (upper bar), since this is an
indicator for the predictability of the system.

Over the whole benchmark (kernel+application), the effective clock cycles, where the processor
is not in idle, see a successive decrease by specializing in software, and even more by using tailored
hardware component (Figure 7.6 (a)). For the moment, we will ignore all cache-induced delays but
will discuss them later explicitly. This reduction becomes more evident, if we look at the number of
cycles where interrupts are blocked, which is the mean to synchronize the kernel with its interrupts.
Especially the SSM+Alarm variant shines with an cumulative interrupt-blockade time that is 83
percent smaller than in the baseline system. This originates from an vastly reduced IRQ load as the
base frequency of the timer interrupt can be reduced by a factor of 10 by the usage of static alarms.

If we look at individual interrupt-blockade intervals, which are the defining factor for interrupt
latency in real-time systems, we see a significant improvement. When we only use the SSM, we
reduce the average interrupt-blockade interval from 195 cycles to 138 cycles. With the additional
alarm component, which shortens the execution time of the timer ISR, the average time drops to 41
cycles.

For synchronous system calls (see Figure 7.6 (b)) that do not lead to a thread switch, we see that
the time spent in the kernel is about the same as for the specialized system calls (−76 %) and the
OSEK-V machine (−79 %). This similarity is caused by the fact, that the system-call specialization
eradicate many scheduler and dispatcher from system-calls that do actually do not reschedule at
run time. However, if we look at system calls that lead to a thread switch, we see that OSEK-V has
at least 75 percent benefit over the baseline if we compare the maxima. On average, this benefit
increases to over 90 percent and the average synchronous system call takes 12 cycles on an OSEK-V
machine with SSM (Baseline: 135 cycles).

For executions of the timer ISR, which manages those alarms that are not handled by the static-
alarm HW component, measured the length of individual activations between interrupt entry and
the iret instruction. Here, the system-call specialization has only a minor influence on cycle count.
When not thread switch happens, the SSM variant shows only a minor average improvement (−8 %)
over the baseline. However, if a rescheduling is necessary, which is done in the timer ISR only if the
ready list is modified, the SSM variant executes about as twice as fast in the worst case (−47 %).
Furthermore, it significantly reduces the number of cache stalls (−72 %) which directly translates to
fewer evicted application cache lines.

In the SSM+Alarms variant, several things change for the timer ISRs: Since we offload two
of three alarms to the hardware, we only see the occurrence of Static Alarm activations in this
variant. Furthermore, the number of timer IRQs drops from 280 to 28, since the generator could
reduce the base rate for the remaining dynamic alarm. This is also the driving factor behind the
observed reduction in the cumulative interrupt-blockade times (see Figure 7.6). While each timer

146



7.4 Experimental Evaluation

ISR execution takes about as long as in the pure SSM variant, we see that that SSM transitions that
are induced from the static-alarm component execute much faster and take at most 10 cycles.

For the cache stalls Figure 7.6 (c), we see that the Specialized variant leads to more cache stalls
(+9 %), since different system-call site share less code due to their specialized implementations.
For SSM, we already see already an decrease by −6 percent, which grows to −47 percent if we use
static alarms. In this SSM+Alarm variant, cache evictions only arise from the dynamic handling of
alarms and from the three instructions in each system-call site (disable interrupts, ssm.tx, enable
interrupts).

7.4.4 Discussion

In the evaluation, the OSEK-V approach showed some unique system properties. Enabled by the
application-specific tailoring, OSEK-V exhibits a short system-call execution time, minimal inter-
ference with application’s machine state, and largely reduced interrupt-blockade times (RQ3).
However, this narrowed focus and the need for specialized hardware comes at a cost and limits to
its applicability.

As we have seen in Chapter 4, we must consider the influence of the RTOS for the WCRT Predictable
RTOS Imple-
mentation

analysis. Thereby, compositional, as well as an integrated, WCRT analyses profit from an execution
platform that provides tight timing bounds, as they simplify the provisioning of a timing-predictable
system. Thereby, OSEK-V has similar goals as the T-CREST/Patmos project [Sch+15b], but on a
higher abstract level. Where T-CREST aims for a predictable processor architecture, OSEK-V provides
a more predictable RTOS abstraction.

As we have seen in the evaluation, system calls on OSEK-V have a minimal influence on the
application. An SSM activation finishes in a few cycles, which are dominated by the instruction fetch
(cache-stall cycle) if we reschedule to another thread. Thereby, the SSM execution does not evict
any cache lines but only flushes the pipeline once. With static alarms, we can offload even more
RTOS duties, which reduces the impact of each ISR execution and the interrupt load itself.

While timing predictability is a first-class design goal for RTCS, embedded devices are challenged
by security concerns, especially when they are connected to the public internet. Here, the RTOS
abstraction, provided by an OSEK-V core, exposes only the interaction that is actually required
by the application, which cuts down the trusted code base. Furthermore, I believe that an OSEK-
V is more trustworthy than an an RTOS implementation on a general-purpose processor: First,
the computational substrate that exhibits the application-requested behavior is of a less powerful
computation model (finite-state machine vs. Turing machine with sufficient memory). Furthermore,
the solidification as hardware component makes OSEK-V less vulnerable to tampering at run-time.

In future research, a combination of OSEK-V and tailored memory protection would result in
perfect isolation between threads. In this scenario, the hart switch would come with a full protection-
domain switch without executing a single instruction.

OSEK-V targets an application scenario where an FPGA is already employed or where the Specialization
vs. Standard-
ization

use of an ASIC is already intended. This high dependence on application-specific hardware is in
contrast to the general industry trend that reduces HW/SW development costs by using high-volume
common-off-the-shelve platforms.

However, there are two reasons why application-specific hardware designs, like OSEK-V, will
become more and more practical in the future. First, we already see how the increasing automation
degree in the hardware design and factoring leads to drastically reduced equipment and per-unit costs
for manufacturing custom chips. As Patterson and Nikolić outlined in an EETimes blog post [PN15],
an “ASIC on demand” industry is currently emerging and already provides reasonable costs at small
batch sizes. The second aspect is the high automation degree of the OSEK-V process. After we have
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implemented the interaction analysis and modified the chip generator, we can produce OSEK-V
cores, without much manual work, for every application that is developed against a standard RTOS
interface. Compiling an OSEK-V core is, from an developers perspective, in the same league as
compiling an software-implemented RTOS.

However, my approach is only applicable if the inflexibility of application-specific chips isUpdatability
tolerable. Produced as an ASIC, an OSEK-V core cannot be updated but it must be replaced if the
interaction between application and RTOS changes. However, as the application itself remains a
software component, it can be changed and updated as long as the location of system calls remains
fixed. More precisely, an OSEK-V core that was manufactured for one application can be used for all
applications whose ASMs are a subgraph of the original ones and whose real-time properties are the
equal. For an FPGA system, the situation is different, since we can treat the updated OSEK-V core as
a part of the new system image.

If the inflexibility of a full OSEK-V system is too large, we can still fall back to a push down only
parts of the interaction into the hardware. For such a hybrid scheduling scheme, we map only the
high-priority threads into their own harts and use software-based scheduling in one low-priority
hart for all other threads. Thereby, we could still provide low latencies for the high-priority threads
while we can thread interaction fully flexible in the low-priority hart.

Besides the real-time domain, application-specific chips are a good fit for the emerging internet-of-
things field. With this trend, small control systems are sold in large numbers and become ubiquitous,
which renegotiates the trade-off between specialization and flexibility, as they strive a high price
pressure and are tightly coupled to the chore and the life span of the employed device.

We already discussed the state-explosion problem of the SSTG in Section 3.3.3. Since OSEK-VScalability
depends on an SSTG, instead of only a GCFG, this problem also arises for the SSM. While ASMs
(Section 3.3.3.2),more precise real-time constraints (Section 3.3.3.1), and the SSM minimization
ease the problem, the construction time and the hardware costs can be infeasible for large systems.
Nevertheless, the evaluation showed that we can produce OSEK-V cores in reasonable time for a
real-world scenario.

On the hardware-cost side, the scalability is determined by the size of the SSM component and
the number of additional hart contexts. For every mapped RTOS thread, we must allocate the storage
capacity for a full register file. This scales linearly with the number of harts and we could use the
FPGA’s block memory to avoid the usage of distributed memory (Memory-LUTs for Xilinx). The SSM
component grows with the application complexity and the degree of environmental indeterminism.
However, this also means that the SSM for a small system, like we have seen with out running
example, results in a small OSEK-V core.

7.5 Summary

Traditionally, the coordinating service of the RTOS is implemented in software and runs on the same
processor as the application. This co-location of kernel and application introduces latencies and
interference between both as the hardware components are shared and must be used in a time-
multiplexed manner. Furthermore, an software-implemented RTOS provides more flexibility, services,
and specified behavior then the application will request at run-time. This leads to unnecessary
overheads and increases the security-relevant attack surface of the privileged RTOS.

However, in a HW/SW co-design setting, we have the chance to push (parts of) the kernel
into the hardware. Instead of implementing a general-purpose RTOS with hardware means, my
proposed OSEK-V approach pushes the interaction model into a hardware component. Thereby, this
system-state machine (SSM) component, which is a state-machine–based solidification of the SSTG,
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7.5 Summary

shows the same behavior as the regular kernel if executed together with one specific application.
However, the SSM is not derived from the code structure of a software RTOS, but only from the
interaction between RTOS and application.

On a technical level, OSEK-V instantiates the SSM, which is a minimized version of the SSTG,
besides the processor pipeline. Each RTOS thread gets mapped to a hardware thread and the SSM
performs the hardware-thread scheduling. Upon the invocation of a system call, the SSM transitions
and outputs the currently running thread, which induces hardware-thread switches if necessary.
Furthermore, the SSM can be triggered by an static-alarm component, which offloads the generation
of periodic thread-activation signals to another component.

In the evaluation with the i4Copter, I could show significant improvements in the different non-
functional system properties, like low event latencies (−79 % average IRQ lock times), interference-
reduced RTOS execution (−47 % cache stalls in the kernel), and fast thread re-scheduling (−81 %
cycles for dispatching syscalls). These improvements come at moderate FPGA cost of 10 percent
more LUTs and 86 distributed memory cells per mapped RTOS thread.

With OSEK-V, I could show that the integrated view on the whole RTCS, which is provided
by the detailed interaction analysis, allows for an in-depth RTOS tailoring that reaches as far as
the hardware domain. These tailored systems, which only exhibit the RTOS behavior for a single
application, show a significant improvement of non-functional properties that are related to the
kernel execution, like latency and interference, and are a more predictable execution environment
for event-based real-time systems (RQ3).
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Summary, Conclusions, and Further

Ideas

There is no real ending. It’s just the place where you stop the story.

FRANK HERBERT, 1969





8.1 Summary and Conclusions

8.1 Summary and Conclusions

8.2 Contributions

8.3 Further Ideas
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[KBL10] Uğur Keskin, Reinder J Bril, and Johan J Lukkien. “Exact response-time analysis for fixed-
priority preemption-threshold scheduling.” In: Emerging Technologies and Factory Automation
(ETFA), 2010 IEEE Conference on. IEEE. 2010, pp. 1–4.

[KE15] S. Kerrison and K. Eder. “Energy Modeling of Software for a Hardware Multithreaded
Embedded Microprocessor.” In: ACM Transactions on Embedded Computing Systems (ACM
TECS) 14.3 (2015), p. 56.

[KE95] Steve Kleiman and Joe Eykholt. “Interrupts as Threads.” In: ACM SIGOPS Operating Systems
Review 29.2 (Apr. 1995), pp. 21–26. ISSN: 0163-5980.

175

https://doi.org/10.1109/12.477249
https://community.arm.com/processors/b/blog/posts/inside-the-numbers-100-billion-arm-based-chips-1345571105
https://community.arm.com/processors/b/blog/posts/inside-the-numbers-100-billion-arm-based-chips-1345571105
https://community.arm.com/processors/b/blog/posts/inside-the-numbers-100-billion-arm-based-chips-1345571105
http://digital-library.theiet.org/content/conferences/10.1049/ic_19981073
http://digital-library.theiet.org/content/conferences/10.1049/ic_19981073
https://doi.org/10.1093/comjnl/29.5.390
/oup/backfile/content_public/journal/comjnl/29/5/10.1093/comjnl/29.5.390/2/290390.pdf
/oup/backfile/content_public/journal/comjnl/29/5/10.1093/comjnl/29.5.390/2/290390.pdf
http://dx.doi.org/10.1093/comjnl/29.5.390
https://doi.org/10.1145/178243.178258


REFERENCES

[KH05] Tae-Hyung Kim and Seongsoo Hong. “State Machine Based Operating System Architecture
for Wireless Sensor Networks.” In: Parallel and Distributed Computing: Applications and
Technologies. Ed. by Kim-Meow Liew, Hong Shen, Simon See, Wentong Cai, Pingzhi Fan, and
Susumu Horiguchi. Vol. 3320. Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2005, pp. 803–806. ISBN: 978-3-540-24013-6. DOI: 10.1007/978-3-540-30501-9_158.

[Kic+97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Videira Lopes,
Jean-Marc Loingtier, and John Irwin. “Aspect-Oriented Programming.” In: Proceedings of
the 11th European Conference on Object-Oriented Programming (ECOOP ’97) (Finland). Ed.
by Mehmet Aksit and Satoshi Matsuoka. Vol. 1241. Lecture Notes in Computer Science.
Springer-Verlag, June 1997, pp. 220–242.

[Kle+09] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip
Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish, Thomas Sewell,
Harvey Tuch, and Simon Winwood. “seL4: formal verification of an OS kernel.” In: Proceedings
of the 22nd ACM Symposium on Operating Systems Principles (SOSP ’09) (Big Sky, Montana,
USA). New York, NY, USA: ACM Press, 2009, pp. 207–220. ISBN: 978-1-60558-752-3. DOI:
10.1145/1629575.1629596.

[Klu+09] Kevin Klues, Chieh-Jan Mike Liang, Jeongyeup Paek, Răzvan Musăloiu-E, Philip Levis, An-
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