
Patch Points for Dynamic Patching
No Fear of Self Modifing Code

Christian Dietrich

March 24, 2011

Goals

I Minimize overhead for conditional disabling code blocks

I Integrate within the C language nicely

I Robust implementation for X86

I Solution is searching a problem! Just a PoC.

Goals

I Minimize overhead for conditional disabling code blocks

I Integrate within the C language nicely

I Robust implementation for X86

I Solution is searching a problem! Just a PoC.

Goals

I Minimize overhead for conditional disabling code blocks

I Integrate within the C language nicely

I Robust implementation for X86

I Solution is searching a problem! Just a PoC.

Goals

I Minimize overhead for conditional disabling code blocks

I Integrate within the C language nicely

I Robust implementation for X86 - hopefully

I Solution is searching a problem! Just a PoC.

Goals

I Minimize overhead for conditional disabling code blocks

I Integrate within the C language nicely

I Robust implementation for X86 - hopefully

I Solution is searching a problem! Just a PoC.

Conversion by Example - Original Code

patch_point_list ppl;

void foo(void) {
patch_point(&ppl, "debug") {
printf("Debugging is enabled\n");

}
}

// Disable all "debug" patch-points
patch_point_disable(&ppl, "debug");

Conversion by Example - Original Code

patch_point_list ppl;

void foo(void) {
patch_point(&ppl, "debug") {
printf("Debugging is enabled\n");

}
}

// Disable all "debug" patch-points
patch_point_disable(&ppl, "debug");

Easy solution with compare?

patch_point_list ppl;

void foo(void) {

if (is_enabled(&ppl, "debug")) {
printf("Debugging is enabled\n");

}
}

// Disable all "debug" patch-points
patch_point_disable(&ppl, "debug");

Easy solution with compare?

patch_point_list ppl;

void foo(void) {
// Compare and conditional jump for every
// call of foo

if (is_enabled(&ppl, "debug")) {
printf("Debugging is enabled\n");

}
}

// Disable all "debug" patch-points
patch_point_disable(&ppl, "debug");

Conversion by example - Macro expansion

#define patch_point(ppl, name) \
if(__patch_point(ppl, name) == 23)

patch_point_list ppl;

void foo(void) {
if (__patch_point(&ppl, "debug") == 23) {
printf("Debugging is enabled\n");

}
}

Conversion by example - Compiled and linked code

if (__patch_point(&ppl, "debug") == 23)

e8 fb 02 00 00 call <__patch_point>
83 f8 17 cmp $0x17,%eax
75 10 jne <_end_of_block>

What we have

e8 fb 02 00 00 call <__patch_point>
83 f8 17 cmp $0x17,%eax
75 10 jne <_end_of_block>

I In patch point we have the address of the call

I Search cmp and jne to get end of block

I Put position and jump offset in patch point list

What we have

e8 fb 02 00 00 call <__patch_point>
83 f8 17 cmp $0x17,%eax
75 10 jne <_end_of_block>

I In patch point we have the address of the call

I Search cmp and jne to get end of block

I Put position and jump offset in patch point list

What we have

e8 fb 02 00 00 call <__patch_point>
83 f8 17 cmp $0x17,%eax
75 10 jne <_end_of_block>

I In patch point we have the address of the call

I Search cmp and jne to get end of block

I Put position and jump offset in patch point list

Conversion by example - enable/disable

e8 fb 02 00 00 call <__patch_point>
83 f8 17 cmp 0x17,%eax
75 10 jne <_end_of_block>

nop nop nop nop nop
nop nop nop
nop nop

enabled

// use 4 byte jmp
jmp <_end_of_block>
jmp <_end_of_block>

disabled

Problems and solutions

I Block not directly after compare

- solved, inverse enabling

I Different jumps - solved, decoding 1/4 byte jumps

I Instructions between call and cmp - solved

I Alls testcases work with -O0, -O1, -O2, -O3, -Os

I One object and one header file

Problems and solutions

I Block not directly after compare - solved, inverse enabling

I Different jumps - solved, decoding 1/4 byte jumps

I Instructions between call and cmp - solved

I Alls testcases work with -O0, -O1, -O2, -O3, -Os

I One object and one header file

Problems and solutions

I Block not directly after compare - solved, inverse enabling

I Different jumps

- solved, decoding 1/4 byte jumps

I Instructions between call and cmp - solved

I Alls testcases work with -O0, -O1, -O2, -O3, -Os

I One object and one header file

Problems and solutions

I Block not directly after compare - solved, inverse enabling

I Different jumps - solved, decoding 1/4 byte jumps

I Instructions between call and cmp - solved

I Alls testcases work with -O0, -O1, -O2, -O3, -Os

I One object and one header file

Problems and solutions

I Block not directly after compare - solved, inverse enabling

I Different jumps - solved, decoding 1/4 byte jumps

I Instructions between call and cmp

- solved

I Alls testcases work with -O0, -O1, -O2, -O3, -Os

I One object and one header file

Problems and solutions

I Block not directly after compare - solved, inverse enabling

I Different jumps - solved, decoding 1/4 byte jumps

I Instructions between call and cmp - solved

I Alls testcases work with -O0, -O1, -O2, -O3, -Os

I One object and one header file

Problems and solutions

I Block not directly after compare - solved, inverse enabling

I Different jumps - solved, decoding 1/4 byte jumps

I Instructions between call and cmp - solved

I Alls testcases work with -O0, -O1, -O2, -O3, -Os

I One object and one header file

Optimize it - fastcall

Use fastcall (Argument passing over registers) and wipe out mov

mov 0x8048e40,%edx
mov 0x804a040,%ecx
call 8048ad6 <__patch_point>
cmp 0x17,%eax
jne 80485e9 <foo+0x55>

Optimize it - no nop slide

I Instead of a nop slide, use a jump to the end of the nop slide.

jmp <call_address+10> // 5 bytes
jmp <call_address+5> // 5 bytes

instead of

nop nop nop nop nop
nop nop nop nop nop

I We get an maximal overhead of 3 cycles + memory access
time.

Solution is searching Problem

