
Implication Conditions as Variability Model
The undertaker approach to KConfig

Reinhard Tartler, Christian Dietrich & Christoph Egger

Department of Computer Science 4

Distributed Systems and Operating Systems

University of Erlangen-Nuremberg

March 9, 2010

supported by

About us

Members of the DFG VAMOS Research project:

Reinhard Tartler

Christian Dietrich

Christoph Egger

rt, cd, ce Implication Conditions as Variability Model (March 9, 2010) 2 – 14

Motivation and Context

Kconfig: The Feature Model of Linux [OPLC-OSSPL 2007]

Linux with its over 10000 features is a perfect candidate
for variability analysis [EuroSys 2011]

Implementation is developed independently from the Feature Model

Feature Model
Implementation

Variability Model

Big Source of Bugs!

rt, cd, ce Implication Conditions as Variability Model (March 9, 2010) 3 – 14

The undertaker approach

Existing, FOSD agnostic, software is analyzed for variation points:

MEMORY MODEL

FLAT MEMORY

DISCONTIGOUS MEMORY

SPARSE MEMORY NUMA

requires

#ifdef CONFIG DISCONTIGMEM

// Code Block 1

ifdef CONFIG NUMA

// Code Block 2

else

// Code Block 3

endif

#endif

satisfiable(K ∧ C ∧ BlockN)

crosscheck
K = (FLATMEMORY → MEMORYMODEL)

∧ (DISCONTIGMEM → MEMORYMODEL)

∧ (SPARSEMEMORY → MEMORYMODEL)

∧ (NUMA → MEMORYMODEL)

∧ (DISCONTIGMEM → NUMA)

P
ro

b
le

m
S
p
ac

e
C
on

st
ra

in
ts

C = (Block 1 → DISCONTIGMEM)

∧ (Block 2 → Block 1 ∧ (NUMA)

∧ (Block 3 → Block 1 ∧ ¬Block 2)

S
olu

tion
S
p
ace

C
on

strain
ts

Figure 1. Inconsistency in Linux v2.6.33 in arch/x86/include/asm/mmzone 32.h found by our approach.

model that are not found in the source code and vice versa) and

semantic inconsistencies (code that cannot be enabled or disabled

by any valid configuration derived from the Kconfig model), we

have sketched a suitable infrastructure to address this problem; in

this work we present a concrete approach that is a fundamental part

for the solution of this problem. While various approaches [9, 16,

17, 24, 31] compare feature models with implementation variability
models, all of them require the implementation model to be created

and maintained separately. However, in many cases such models

are simply not available (e.g., because of the use of legacy code,

3rd party software, etc.) and manual reengineering based on the

implementation is not feasible. Instead, we use the model that

is hidden in the source code as expressed by the means of CPP

directives.

The context of our approach is to exploit both the configuration

variability from the feature model as well as the implementation

variability model from CPP directives, which is shown in Figure 1.

The left side of the Figure depicts a part of the feature model of

Linux as extracted from Kconfig definitions. Using propositional

logic, we can show that the Kconfig constraints effectively ensure

that if the feature DISCONTIGMEM is set, then the feature NUMA

must be selected as well. This information allows our approach to

detect that the nested block that is introduced by the expression

#ifdef CONFIG NUMA in the source excerpt on the right side is

always defined and its #else sister block is unnecessary and can

be removed!

In this work we focus on the right side of Figure 1, that is,

how to extract the boolean formula from the preprocessor-based

source artifacts in order to enable the crosschecking between the

variability model and the implementation. Figure 1 shows a real

example of inconsistency between the variability model and the

implementation variability that has been revealed by our approach.

The #else block of the code snippet on the right will never be

selected by any valid configuration of the model shown on the

left side. This is because the feature DISCONTIGOUS MEMORY

requires the feature NUMA as described in the variability model, and,

in the code, the conditional block that depends on NUMA is nested in

the block that depends on DISCONTIGOUS MEMORY, therefore,

when the outer block is selected, the first inner block will always

be. Consequently, the #else block will never be enabled. The

problem satisfiable(K∧C ∧ Block3), which conjugates the model

constraints (K), the implementation constraints described as CPP

statements (C) and a specific CPP block (Block3) is unsatisfiable.

With this we know that this block of code is dead.

As we will show in the remainder this document, the sole model

derived from the source artifacts does not only enable the mentioned

crosscheckings, by it can also reveal inherent inconsistencies and

defects. In this work we present a fundamental building block for

our approach to detect defects and inconsistencies and it enables

several kinds of reasonings in order to better integrate CPP-based

artifacts into the SPL development.

1.1 Challenges
We present an approach for extracting a variability model directly

from source code that uses the CPP, which can then used for further

analysis. This makes most sense in projects with a considerable code

size; in smaller projects the implementation variability is rather clear.

In Linux, we are facing a project with nearly 30.000 source files that

contain over 60.000 configuration dependent conditional blocks.

In order to make this technique useful for developers during the

regular development phase, this process needs to be fast. The best

technique proposed so far is using symbolic execution techniques on

preprocessor statements [12, 18]. While these techniques are very

precise as they operate on expanded compilation units, we will show

that and why this does not scale and propose an approach that is

both precise and fast. We envision integration of our techniques in

development environments so that variability analysis, like finding

configuration defects, or redundant or dead code, can be made

available already at programming time.

1.2 Contributions
In summary, we make the following contributions:

1. We formalize the CPP directives using propositional logic.

2. We present an approach to build the boolean formula that

represents the variability of compilation units.

3. We provide a tool chain that implements our theoretical con-

cepts.

4. We present a feasibility study by applying our tool to the Linux

kernel, which revealed 4 inconsistencies in its code base (without

considering additional constraints from Kconfig).

2. Extracting Variability from Source Code
In this section, we formalize the mechanisms for conditional com-
pilation. We strictly follow the CPP language specification [13],

Section §10.6.1, and employ propositional logic as means of ab-

straction. We introduce several definitions that basically represent

undertaker extracts propositional formulas

rt, cd, ce Implication Conditions as Variability Model (March 9, 2010) 4 – 14

Classification of Configuration Defects

diff --git a/kernel/smp.c b/kernel/smp.c

--- a/kernel/smp.c

+++ b/kernel/smp.c

-#ifdef CONFIG_CPU_HOTPLUG

+#ifdef CONFIG_HOTPLUG_CPU

Patch for a symbolic defect

diff --git a/arch/x86/include/asm/mmzone_32.h

b/arch/x86/include/asm/mmzone_32.h

--- a/arch/x86/include/asm/mmzone_32.h

+++ b/arch/x86/include/asm/mmzone_32.h

@@ -61,11 +61,7 @@ extern s8

physnode_map [];

static inline int pfn_to_nid(unsigned long pfn) {

-#ifdef CONFIG_NUMA

return ((int) physnode_map [(pfn) / PAGES_PER_ELEMENT]);

-#else

- return 0;

-#endif

}

/*

Patch for a logical defect

rt, cd, ce Implication Conditions as Variability Model (March 9, 2010) 5 – 14

Classification of Configuration Defects

diff --git a/kernel/smp.c b/kernel/smp.c

--- a/kernel/smp.c

+++ b/kernel/smp.c

-#ifdef CONFIG_CPU_HOTPLUG

+#ifdef CONFIG_HOTPLUG_CPU

Patch for a symbolic defect

diff --git a/arch/x86/include/asm/mmzone_32.h

b/arch/x86/include/asm/mmzone_32.h

--- a/arch/x86/include/asm/mmzone_32.h

+++ b/arch/x86/include/asm/mmzone_32.h

@@ -61,11 +61,7 @@ extern s8

physnode_map [];

static inline int pfn_to_nid(unsigned long pfn) {

-#ifdef CONFIG_NUMA

return ((int) physnode_map [(pfn) / PAGES_PER_ELEMENT]);

-#else

- return 0;

-#endif

}

/*

Patch for a logical defect

rt, cd, ce Implication Conditions as Variability Model (March 9, 2010) 5 – 14

Our results so far from the Dead Block Analysis

subsystem #ifdefs logic symbolic total
arch/ 33757 345 581 926
drivers/ 32695 88 648 736
fs/ 3000 4 13 17
include/ 7241 6 11 17
kernel/ 1412 7 2 9
mm/ 555 0 1 1
net/ 2731 1 49 50
sound/ 3246 5 10 15
virt/ 53 0 0 0
other subsystems 601 4 1 5∑

85291 460 1316 1776
fix proposed 150 (1) 214 (22) 364 (23)
confirmed defect 38 (1) 116 (20) 154 (21)
confirmed rule-violation 88 (0) 21 (2) 109 (2)
pending 24 (0) 77 (0) 101 (0)

rt, cd, ce Implication Conditions as Variability Model (March 9, 2010) 6 – 14

Conclusions

Undertaker finds and buries real problems

Over 100 patches submitted!
has already received rave reviews by kernel developers
and even the Linux Magazine [LM 04/11]

Not really Linux specific

CPP annotated code is pretty common in e.g. system software
Configuration Models are often hard to access

⇒ Need to write variability extractors for other projects

Underapproximations are totally sufficient

The better the model, the better results, obviously

rt, cd, ce Implication Conditions as Variability Model (March 9, 2010) 7 – 14

Conclusions (?)

Undertaker finds and buries real problems

Over 100 patches submitted!
has already received rave reviews by kernel developers
and even the Linux Magazine [LM 04/11]

Not really Linux specific

CPP annotated code is pretty common in e.g. system software
Configuration Models are often hard to access

⇒ Need to write variability extractors for other projects

Underapproximations are totally sufficient

The better the model, the better results, obviously

rt, cd, ce Implication Conditions as Variability Model (March 9, 2010) 7 – 14

Variability extraction for Kconfig

Kconfig is a tool and language to describe variability

Used by both developers and users to configure a specific variant

Text and graphical front ends are available

Features some very tricky semantics!

Extraction goal is a set of rules, which describes the semantic:

SYMBOL→ IMPLICATION CONDITION

Slices of the model can be extracted!

rt, cd, ce Implication Conditions as Variability Model (March 9, 2010) 8 – 14

Dependencies

Dependencies are the easiest possibility way in Kconfig
to express relations

In Kconfig dependencies must always be fullfiled

config HAVE_ARCH_ALLOC_REMAP

depends on NUMA && X86_32

When HAVE ARCH ALLOC REMAP is enabled the dependencies must
also be satisfied:
HAVE ARCH ALLOC REMAP→ (NUMA ∧ X86 32)

This only handles the boolean case.
Tristate is more complicated, but very similar

rt, cd, ce Implication Conditions as Variability Model (March 9, 2010) 9 – 14

Choices

A choice gathers multiple other config options,
were only one option is enabled

Choices have no names, and can’t be referenced, so we have to
generate artificial keys.

choice "High Memory Support"

config HIGHMEM4G [...] # These are 2

config HIGHMEM64G [...] # alternatives

endchoice

CHOICE 0→ HIGHMEM4G⊕ HIGHMEM64G

HIGHMEM4G→ CHOICE 0 HIGHMEM64G→ CHOICE 0

This only handles the boolean choices, tristates are much more
complicated

rt, cd, ce Implication Conditions as Variability Model (March 9, 2010) 10 – 14

Choices - optional

A choice gathers multiple other config options,
were only one or no option is enabled

Choices have no names, and can’t be referenced, so we have to
generate artificial keys.

choice "High Memory Support" ; optional

config HIGHMEM4G [...] # These are 2

config HIGHMEM64G [...] # alternatives

endchoice

CHOICE 0→ HIGHMEM4G⊕ HIGHMEM64G ⊕ FREE

HIGHMEM4G→ CHOICE 0 HIGHMEM64G→ CHOICE 0

This only handles the boolean choices, tristates are much more
complicated

rt, cd, ce Implication Conditions as Variability Model (March 9, 2010) 10 – 14

selects - Reverse Dependencies

A selection means, that enabling an option can cause an other option
to be enabled automatically

In Kconfig selects don’t obey dependencies, but this behaviour is
deprecated, rarely used and will hopefully be removed in the future

A select can be guarded with an expression, then the select is only
done, when the expression is true

con f i g X86
s e l e c t HAVE ARCH GDB # X86 s e l e c t s HAVE ARCH GDB
s e l e c t GENERIC PENDING IRC i f SMP # on l y i f SMP enab l ed

X86→ HAVE ARCH GDB

X86→ (SMP→ GENERIC PENDING IRQ)

rt, cd, ce Implication Conditions as Variability Model (March 9, 2010) 11 – 14

selects - revisited

selects do not only have a forward reference

If an option can’t be visible in the menu, and has no defaule value,
it can only be enabled by selects

One of the selecting options must be true:

config OLPC

select GPIOLIB

config ARCH_REQUIRE_GPIOLIB

select GPIOLIB

Here GPIOLIB is selected by two different options

GPIOLIB→ (OLPC ∨ ARCH REQUIRE GPIOLIB)

Default values (which can be guarded with expressions) can also be
handled in a similar manner

rt, cd, ce Implication Conditions as Variability Model (March 9, 2010) 12 – 14

The Kconfig model

config options 10924 dependencies 6919
boolean 5665 selects 3792
tristate 4482 choices 53
other 1777 within choices 186

Table: Used features in Kconfig: Linux 2.6.37-rc8, x86

11690 implication conditions,
with no Kconfig specific construct left

In average 5.4 options are mentioned on the right side

rt, cd, ce Implication Conditions as Variability Model (March 9, 2010) 13 – 14

Conclusions

undertaker is conceptionally not Linux-specific

Exploits domain knowledge,
but presence implications are project agnostic

Variability models with implication conditions don’t have to be
complete, they can be under approximated

Published as Free Software at
http://vamos.informatik.uni-erlangen.de/trac/undertaker

Feel free to get in touch with us!

Thank you for your attention!

rt, cd, ce Implication Conditions as Variability Model (March 9, 2010) 14 – 14

http://vamos.informatik.uni-erlangen.de/trac/undertaker

Conclusions

undertaker is conceptionally not Linux-specific

Exploits domain knowledge,
but presence implications are project agnostic

Variability models with implication conditions don’t have to be
complete, they can be under approximated

Published as Free Software at
http://vamos.informatik.uni-erlangen.de/trac/undertaker

Feel free to get in touch with us!

Thank you for your attention!

rt, cd, ce Implication Conditions as Variability Model (March 9, 2010) 14 – 14

http://vamos.informatik.uni-erlangen.de/trac/undertaker

